Near-surface Gust Factor Characteristics in Several Disastrous Winds over Zhejiang Province
-
摘要: 阵风特性研究是大风预报和服务的基础。基于2011-2013年浙江省自动气象站逐日逐10 min测风资料,分析了浙江省陆地和近海海面冷空气、热带气旋和强对流大风的阵风系数特征。结果表明:冷空气和热带气旋大风阵风系数空间分布基本相同,大风主要发生在近海海面和沿海地区,海面阵风系数一般小于1.5,等值线平行于海岸线且自西向东逐渐减小,陆地阵风系数一般大于2.0,山区可超过3.0,表现出地形对阵风系数的增强作用。强对流大风阵风系数明显高于业务规范平均值,发生地点遍及浙江省各地,但发生概率超过10%的站点主要位于沿海地区和近海海面。风向基本不影响阵风系数空间分布。冷空气和热带气旋站点阵风系数与海拔高度有较高正相关性。模糊聚类分析发现:浙江省400 m以上山区站与70 m以下的低海拔站点在阵风系数特征上分属不同空间类型;基于逐步回归建立站点阵风系数预报模型,检验表明:模糊聚类可帮助提高模型阵风系数预报能力。Abstract: Studies on near-surface gust characteristics in high winds are necessary for weather services. Using the daily 10 min data from automatic weather stations in Zhejiang Province during 2011-2013, characteristics of near-surface gust factors in several kinds of high winds caused by cold air masses, tropical cyclones and abruptly severe convections, are investigated over the offshore and in-land areas of Zhejiang Province. Spatial distributions of wind velocities and gust factors are especially considered, as well as the relationship among gust factors, geographical elements and mean wind speeds. The fuzzy cluster mean (FCM) and stepwise regression methods are applied as well to do the weather station clusters under different weather patterns and set up gust factor forecast models. Result shows that the gust factor distribution displays similarly both in cold air and tropical cyclone strong winds although spatial speed distributions might be different from each other, and wind directions show no effects on gust factor distributions. Disastrous winds usually happen over the offshore seas and coastal areas, with gust factors less than 1.5 and the isolines paralleling to the coastline and descending eastwards. However, over in-land areas of Zhejiang Province, gust factors are generally greater than 2.0 and even more than 3.0 over the hilly regions with gentle wind speeds, indicating enhancing effects of hilly terrain. The average gust factor is more than 1.8 under severe convective systems, which is greater than operational regulations. The convective gale events could occur at any locations within Zhejiang Province, but stations with occurring probabilities more than 10% mainly lay in the coastal and offshore Zhejiang Province, and the terrain roughness doesn't show much influence. Gust factors perform well related to 10 min mean wind speeds and altitudes in high winds by cold air masses and tropical cyclones. FCM analysis indicates that there are few differences in station distributions between clod air mass and tropical cyclone gale events, stations located in the northern and coastal regions often differ from those in the middle and southern areas in Zhejiang Province, and stations with altitudes more than 400 m are different from those with altitudes lower than 70 m. Stepwise regression is carried out to set up forecasting models between gust factors and mean winds and station altitudes before and after FCM clusters, verifications imply that FCM could help improve forecast ability of the models. The regression model for type Ⅰ tends to overestimate gust factors at stations with relative high altitudes, on the contrary, the model for type Ⅱ tends to underestimate gust factors at stations with relative low altitudes.
-
表 1 浙江省自动气象站阵风系数与各要素的相关系数
Table 1 Correlation coefficients between automatic weather station gust factors and elements in Zhejiang Province
天气系统 风向 纬度 经度 海拔高度 平均风速 样本量 冷空气 北 -0.234 -0.254 0.195 -0.585 1820 东北 -0.203 -0.206 0.174 -0.582 1799 东 -0.219 -0.166 0.181 -0.554 1754 东南 -0.167 -0.115 0.115 -0.494 1605 南 -0.175 -0.144 0.110 -0.458 1599 西南 -0.251 -0.145 0.169 -0.468 1675 西 -0.267 -0.222 0.209 -0.520 1754 西北 -0.252 -0.297 0.232 -0.576 1808 热带气旋 北 -0.245 -0.272 0.187 -0.576 1720 东北 -0.282 -0.291 0.230 -0.624 1715 东 -0.288 -0.291 0.253 -0.630 1720 东南 -0.246 -0.294 0.216 -0.573 1711 南 -0.203 -0.264 0.217 -0.501 1657 西南 -0.227 -0.236 0.228 -0.525 1672 西 -0.284 -0.292 0.251 -0.543 1686 西北 -0.251 -0.287 0.229 -0.542 1701 强对流 -0.010 -0.171 0.059 -0.418 4185 表 2 浙江省自动气象站点模糊聚类统计
Table 2 FCM results of automatic weather stations in Zhejiang Province
天气系统 聚类型 平均海拔/m 平均阵风系数 站点数量 不低于400 m 不高于70 m 70~400 m 合计 冷空气 Ⅰ型 83 2.4 41 691 361 1093 Ⅱ型 347 3.6 226 99 302 627 全部站点 180 2.8 267 790 663 1720 热带气旋 Ⅰ型 70 2.3 51 723 345 1119 Ⅱ型 400 3.5 260 13 328 601 全部站点 185 2.7 311 736 673 1720 表 3 浙江省自动气象站阵风系数逐步回归预报模型检验
Table 3 Verification of stepwise regression forecast models of station gust factors in Zhejiang Province
天气系统 聚类型 回归样
本量独立检验
样本量F值 相关系数 平均偏差 绝对偏差 均方根误差 冷空气 未分型 1204 514 314.877 0.486 0.351 0.762 0.831 Ⅰ型 765 327 84.327 0.456 -0.073 0.428 0.533 Ⅱ型 439 187 88.913 0.556 -0.333 0.651 0.778 热带气旋 未分型 1200 515 292.090 0.433 0.237 0.761 0.887 Ⅰ型 780 336 51.197 0.612 -0.291 0.468 0.557 Ⅱ型 420 179 79.503 0.578 -0.150 0.644 0.783 -
[1] 许向春, 辛吉武, 邢旭煌, 等.琼州海峡南岸近地面层大风观测分析.热带气象学报, 2013, 29(3):481-488. http://www.cnki.com.cn/Article/CJFDTOTAL-RDQX201303015.htm [2] 陈敏, 马雷鸣, 魏海萍, 等.气象条件对上海世博会期间空气质量影响.应用气象学报, 2013, 24(2):140-150. http://qikan.camscma.cn/jams/ch/reader/view_abstract.aspx?file_no=20130202&flag=1 [3] 尹尽勇, 刘涛, 张增海, 等.冬季黄渤海大风天气与渔船风损统计分析.气象, 2009, 35(6):90-95. http://www.cnki.com.cn/Article/CJFDTOTAL-QXXX200906013.htm [4] 马淑红, 马韫娟, 程先东, 等.我国高速铁路沿线强风区间的确定方法及风险评估.铁道工程学报, 2011(3):37-45. http://www.cnki.com.cn/Article/CJFDTOTAL-TDGC201103009.htm [5] 郑永光, 田付友, 孟智勇, 等."东方之星"客轮翻沉事件周边区域风灾现场调查与多尺度特征分析.气象, 2016, 42(1):1-13. http://www.cnki.com.cn/Article/CJFDTOTAL-QXXX201601001.htm [6] Davenport A G.The spectrum of horizontal gustiness near the ground in high winds.Quart J Roy Meteor Soc, 1961, 87:194-211. doi: 10.1002/(ISSN)1477-870X [7] Shiotani M, Iwatani Y, Ruroha K.Magnitudes and horizontal correlations of vertical velocities in high winds.J Meteor Soc Japan, 1978, 56:35-42. [8] Brasseur O.Development and application of a physical approach to estimating wind gusts.Mon Wea Rev, 2001, 129(1):5-25. doi: 10.1175/1520-0493(2001)129<0005:DAAOAP>2.0.CO;2 [9] Yu B, Chowdhury A G.Gust factors and turbulence intensities for the tropical cyclone environment.J Appl Meteor Clim, 2009, 48(3):534-552. doi: 10.1175/2008JAMC1906.1 [10] Thorarinsdottir T L, Johnson M S. Probabilistic wind gust forecasting using nonhomogeneous gaussian regression.Mon Wea Rev, 2012, 140(3):889-897. doi: 10.1175/MWR-D-11-00075.1 [11] Miller P W, Black A W, Williams C A, et al.Maximum wind gusts associated with human-reported nonconvective wind events and a comparison to current warning issuance criteria.Wea Forecasting, 2016, 31(2):451-465. doi: 10.1175/WAF-D-15-0112.1 [12] 董双林.中国的阵风极值及其统计研究.气象学报, 2001, 59(3):327-333. http://www.cnki.com.cn/Article/CJFDTOTAL-QXXB200103006.htm [13] 中华人民共和国建设部.建筑结构荷载规范(GB50009-2001).北京:中国建筑工业出版社, 2002:47-48. http://www.cnki.com.cn/Article/CJFDTOTAL-GJBZ200605016.htm [14] 宋丽莉, 毛慧琴, 汤海燕, 等.广东沿海近地层大风特性的观测分析.热带气象学报, 2004, 20(6):731-736. http://www.cnki.com.cn/Article/CJFDTOTAL-RDQX20040600D.htm [15] 程雪玲, 曾庆存, 胡非, 等.大气边界层强风的阵性和相干结构.气候与环境研究, 2007, 12(3):227-243. http://www.cnki.com.cn/Article/CJFDTOTAL-QHYH200703002.htm [16] 曾庆存, 程雪玲, 胡非.大气边界层非常定下沉急流和阵风的起沙机理.气候与环境研究, 2007, 12(3):244-250. http://www.cnki.com.cn/Article/CJFDTOTAL-QHYH200703003.htm [17] 李亚春, 武金岗, 谢志清, 等.不同强风样本湍流特性参数的计算分析.应用气象学报, 2008, 19(1):28-34. http://qikan.camscma.cn/jams/ch/reader/view_abstract.aspx?file_no=20080105&flag=1 [18] Powell M D, Vickery P J, Reinhold T A.Reduced drag coefficients for high wind speeds in tropical cyclones.Nature, 2003, 422:279-283. doi: 10.1038/nature01481 [19] 宋丽莉, 庞加斌, 蒋承霖, 等.澳门友谊大桥"鹦鹉"台风的湍流特性实测和分析.中国科学(技术科学), 2010, 40(12):1409-1419. http://www.cnki.com.cn/Article/CJFDTOTAL-JEXK201012004.htm [20] 王志春, 植石群, 丁凌云.强台风纳沙(1117)近地层风特性观测分析.应用气象学报, 2013, 24(5):595-605. http://qikan.camscma.cn/jams/ch/reader/view_abstract.aspx?file_no=20130509&flag=1 [21] 张荣焱, 张秀芝, 杨校生, 等.台风莫拉克(0908)影响期间近地层风特性.应用气象学报, 2012, 23(2):184-194. http://qikan.camscma.cn/jams/ch/reader/view_abstract.aspx?file_no=20120207&flag=1 [22] 陈雯超, 宋丽莉, 植石群, 等.不同下垫面的热带气旋强风阵风系数研究.中国科学(技术科学), 2011, 41(11):1449-1459. http://www.cnki.com.cn/Article/CJFDTOTAL-JEXK201111006.htm [23] 卢美, 朱业.浙江沿海大风的天气气候特征.杭州师范大学学报(自然科学版), 2011, 10(5):474-480. http://www.cnki.com.cn/Article/CJFDTOTAL-HSFZ201105018.htm [24] 呼津华, 王相明.风电场不同高度的50年一遇最大和极大风速估算.应用气象学报, 2009, 20(1):108-113. http://qikan.camscma.cn/jams/ch/reader/view_abstract.aspx?file_no=20090114&flag=1 [25] Harper B A, Kepert J D, Ginger J D.Guidelines for Converting Between Various Wind Averaging Periods in Tropical Cyclone Conditions.Sixth Tropical Cyclone RSMCs/WCs Technical Coordination Meeting Technical Document, Brisbane, 2009. [26] 刘小红, 洪钟祥.北京地区一次特大强风过程边界层结构的研究.大气科学, 1996, 20(2):223-228. http://www.cnki.com.cn/Article/CJFDTOTAL-DQXK602.011.htm [27] 李铁, 邹立尧, 国世友.东北地区低温气象资料数据集及其质量控制.应用气象学报, 2004, 15(增刊Ⅰ):164-167. http://www.cnki.com.cn/Article/CJFDTOTAL-YYQX2004S1023.htm [28] 李艳, 史舟, 吴次芳, 等.基于模糊聚类分析的田间精确管理分区研究.中国农业科学, 2007, 40(1):114-122. http://www.cnki.com.cn/Article/CJFDTOTAL-ZNYK200701015.htm [29] 高新波, 裴继红, 谢维信.模糊c-均值聚类算法中加权指数m的研究.电子学报, 2000, 28(4):80-83. http://www.cnki.com.cn/Article/CJFDTOTAL-DZXU200004021.htm [30] 陈彦, 吕新.基于FCM的绿洲农田养分管理分区研究.中国农业科学, 2008, 41(7):2016-2024. http://www.cnki.com.cn/Article/CJFDTOTAL-ZNYK200807021.htm