Spatiotemporal Variations of Snowfall Days over the Tibetan Plateau from 1981 to 2010
-
摘要: 利用青藏高原气象站降雪日数观测资料,分析1981-2010年青藏高原降雪日数的时空变化特点和主要影响因素。结果表明:降雪日数总体上呈青藏高原中东部高寒地区、喜马拉雅山脉南麓和祁连山脉流域降雪日数多,南部河谷和北部湖盆区降雪日数少的空间分布格局;春季降雪日数占全年的45%,其次是冬季(28%)和秋季(22%),夏季最少(5%);30年内青藏高原平均年降雪日数呈明显减少趋势,降幅达10.5 d/(10 a),其中,春季降幅最大(4.8 d/(10 a)),夏季最小(1.2 d/(10 a));年降雪日数在1997年发生了由多到少的气候突变;降雪日数年内分布呈双峰型,峰值出现在冬夏大气环流的转换季节,青藏高原大气环流的转换期与上升运动相联系的低值天气系统和高空温湿条件均有利于降雪出现;青藏高原降雪日数的明显减少与气温的显著上升呈线性关系。Abstract: Snow is a vital component of alpine regions due to its large seasonal variations and distinctive physical properties, it greatly affects climate, hydrology, and ecology at regional and global scales. The Tibetan Plateau (TP), also called "the roof of the world", is the highest land and typical alpine region on the earth with over 4000 m above sea level. Snow on the TP is a vital fresh water source in the Himalayan region and downstream areas, and also a significant indicator of climate change from regional to global scales. Therefore, under global climate warming, the variation of snowfall days over the TP, which is defined as the number of days with snowfall (including sleet) weather at a station from 2000 BT to 2000 BT, is concerned by international scientific community and local people.Spatial and temporal variations of snowfall days over the TP are analyzed using snow observations from 94 meteorological stations for the period from 1981 to 2010, and the following results are obtained. Snowfall days over the TP are generally characterized by more snowfall days in the central and eastern alpine region, southern slope of the Himalayan range and the Qilian mountains in the northeast, and less snowfall days in valleys in south and the Qaidam Basin in the north. The number of averaged annual snowfall days for the TP is 60 days, of which 45% occurs in spring, 28% in winter, 22% in autumn and 5% in summer, respectively. There is a very significant decreasing trend in mean annual snowfall days from 1981 to 2010 over the TP with a rate of 10.5 days per decade. The abrupt climate change of snowfall days from more to less occurs around 1997 and in the later 10 years, annual snowfall days decrease obviously especially in 2010, which is an anomalous snowless year. Intra-annual distribution of snowfall days over the TP is characterized by double-peak type. The first peak occurs during transition period of atmospheric circulation from winter to summer and the second peak takes place in transition period of atmospheric circulations from summer to winter with less peak value. During the transition time of atmospheric circulation, low value weather system along with upward air movement and temperature and humidity conditions in the upper air is favorable for snowfall over the TP. A very significant correlation exists between decrease in snowfall days and increase in temperature from 1981 to 2010 over the TP. Under global warming and more rapid temperature increasing on the TP, the rainfall previously in snow form converts into liquid rainfall, which may significantly contribute to the decrease of snowfall days over the TP in the recent 30 years.
-
表 1 青藏高原降雪日数变化特征统计
Table 1 A summary of the linear trend and the moving t-test statistical analysis
统计项目 春季 夏季 秋季 冬季 年 平均降雪日数/d 27 3 13 17 60 平均年内比例/% 45 5 22 28 变化幅度/(d·a-1) -0.48 -0.12 -0.19 -0.28 -1.05 异常偏多年份 1983 1982, 1997 1982 异常偏少年份 2010 突变检测年份 1997 1995 1997 决定系数 0.699** 0.602** 0.301* 0.401** 0.718** 注:*表示达到0.01显著性水平,**表示达到0.001显著性水平。 表 2 1981—2010年青藏高原降雪日数与主要气象要素之间的相关系数
Table 2 Relationships between the number of snowfall days and main climate variables for the Tibetan Plateau
时段 平均气温 平均最高气温 平均最低气温 降水量 春季 -0.89** -0.88** -0.87** -0.58** 夏季 -0.83** -0.69** -0.84** -0.38* 秋季 -0.79** -0.89** -0.63** 0.20 冬季 -0.78** -0.86** -0.67** 0.66** 年 -0.92** -0.93** -0.88** -0.39* 注:*表示达到0.05显著性水平,**表示达到0.001显著性水平。 -
[1] 李吉均, 郑本兴, 杨锡金, 等.西藏冰川.北京:科学出版社, 1986. http://cpfd.cnki.com.cn/Article/CPFDTOTAL-ZGDV200110002089.htm [2] Groisman P Y, Karl T R, Knight R W.Observed impact of snow cover on the heat balance and the rise of continental spring temperatures.Science, 1994, 263:198-200. doi: 10.1126/science.263.5144.198 [3] 赵亮, 朱玉祥, 程亮, 等.遥感-测站相结合的动态雪深反演方法初探.应用气象学报, 2010, 21(6):685-697. doi: 10.11898/1001-7313.20100605 [4] 张人禾, 张若楠, 左志燕.中国冬季积雪特征及欧亚大陆积雪对中国气候影响.应用气象学报, 2016, 27(5):513-526. doi: 10.11898/1001-7313.20160501 [5] 马丽娟, 秦大河, 卞林根, 等.青藏高原积雪日数的气温敏感度分析.气候变化研究进展, 2010, 6(1):1-7. http://www.cnki.com.cn/Article/CJFDTOTAL-QHBH201001003.htm [6] 柏晶瑜, 徐祥德, 周玉淑, 等.春季青藏高原感热异常对长江中下游夏季降水影响的初步研究.应用气象学报, 2003, 14(3):363-368. http://qikan.camscma.cn/jams/ch/reader/view_abstract.aspx?file_no=20030344&flag=1 [7] Immerzeel W W, van Beek L P H, Bierkens, M F P.Climate change will affect the Asian water towers.Sciences, 2010, 328:1382-1385. doi: 10.1126/science.1183188 [8] 王澄海, 李燕, 王艺.北半球大气环流及其冬季风的年代际变化对青藏高原冬季降雪的影响.气候与环境研究, 2015, 20(4):421-432. http://www.cnki.com.cn/Article/CJFDTOTAL-QHYH201504005.htm [9] 李栋梁, 王春学.积雪分布及其对中国气候影响的研究进展.大气科学学报, 2011, 34(5):627-636. http://www.cnki.com.cn/Article/CJFDTOTAL-NJQX201105014.htm [10] 罗勇.青藏高原冬春季积雪对东亚夏季大气环流影响的研究.高原气象, 1995, 14(4):505-512. http://www.cnki.com.cn/Article/CJFDTOTAL-GYQX504.015.htm [11] 陈乾金, 高波, 李维京, 等.青藏高原冬季积雪异常和长江中下游主汛期旱涝及其与环流关系的研究.气象学报, 2000, 58(5):582-595. doi: 10.11676/qxxb2000.060 [12] 钟爱华, 严华生, 李跃清, 等.青藏高原积雪异常与大气环流异常间关系分析.应用气象学报, 2010, 21(1):37-46. doi: 10.11898/1001-7313.20100105 [13] Liu Yimin, Bao Qing, Duan Anmin, et al.Recent progress in the impact of the Tibetan Plateau on climate in China.Adv Atmos Sci, 2007, 24(6):1060-1076. doi: 10.1007/s00376-007-1060-3 [14] 朱玉祥, 丁一汇, 刘海文.青藏高原冬季积雪影响我国夏季降水的模拟研究.大气科学, 2009, 33(5):903-915. http://www.cnki.com.cn/Article/CJFDTOTAL-DQXK200905004.htm [15] 韦志刚, 罗四维, 董文杰.青藏高原积雪资料分析及其与我国夏季降水的关系.应用气象学报, 1998, 9(1):39-46. http://qikan.camscma.cn/jams/ch/reader/view_abstract.aspx?file_no=20100105&flag=1 [16] 万欣, 康世昌, 李延峰, 等.2007-2011年西藏纳木错流域积雪时空变化及其影响因素分析.冰川冻土, 2013, 35(6):1400-1409. [17] 杨存建, 赵梓健, 倪静, 等.基于MODIS数据的川西积雪时空变化分析.中国科学 (地球科学), 2011, 41(12):1743-1750. http://www.cnki.com.cn/Article/CJFDTOTAL-JDXK201112004.htm [18] Zhang G, Xie H, Yao T, et al.Snow cover dynamics of four lake basins over Tibetan Plateau using time series MODIS data (2001-2010).Water Resour Res, 2012, 48, W10529, DOI:10.1029/2012WR011971. [19] 王叶堂, 何勇, 侯书贵.2000-2005年青藏高原积雪时空变化分析.冰川冻土, 2007, 29(6):855-861. http://www.cnki.com.cn/Article/CJFDTOTAL-BCDT200706004.htm [20] Chu D, Xie H, Wang P, et al.Snow cover variation over the Tibetan Plateau from MODIS and comparison with ground observations.Journal of Applied Remote Sensing, 2014, 8(1):84690(1-30). [21] 柏延臣, 冯学智, 李新, 等.基于被动微波遥感的青藏高原雪深反演及其结果评价.遥感学报, 2001, 5(3):161-165. doi: 10.11834/jrs.20010301 [22] 车涛, 李新, 高峰.青藏高原积雪深度和雪水当量的被动微波遥感反演.冰川冻土, 2004, 26(3):363-368. http://www.cnki.com.cn/Article/CJFDTOTAL-BCDT200403019.htm [23] 李晓静, 刘玉洁, 朱小祥, 等.利用SSM/I数据判识我国及周边地区雪盖.应用气象学报, 2007, 18(1):12-20. doi: 10.11898/1001-7313.20070103 [24] 张志富, 希爽, 刘娜, 等.1961-2012年中国降雪时空变化特征分析.资源科学, 2015, 37(9):1765-1773. http://www.cnki.com.cn/Article/CJFDTOTAL-ZRZY201509011.htm [25] 刘玉莲, 任国玉, 于宏敏, 等.我国强降雪气候特征及其变化.应用气象学报, 2013, 24(3):304-313. doi: 10.11898/1001-7313.20130306 [26] 孙秀忠, 罗勇, 张霞, 等.近46年来我国降雪变化特征分析.高原气象, 2010, 29(6):1594-1601. http://www.cnki.com.cn/Article/CJFDTOTAL-GYQX201006027.htm [27] 徐兴奎.1970-2000年中国降雪量变化和区域性分布特征.冰川冻土, 2011, 33(3):497-503. http://www.cnki.com.cn/Article/CJFDTOTAL-BCDT201103006.htm [28] 刘玉莲, 任国玉, 于宏敏.中国降雪气候学特征.地理科学, 2012, 32(10):1176-1185. http://www.cnki.com.cn/Article/CJFDTOTAL-DLKX201210004.htm [29] 朱小凡, 张明军, 王圣杰, 等.1962-2012年青海省降雪初始终止日期和降雪日数时空变化特征.生态学杂志, 2014, 33(3):761-770. http://www.cnki.com.cn/Article/CJFDTOTAL-STXZ201403030.htm [30] 胡豪然, 梁玲.近50年青藏高原东部降雪的时空演变.地理学报, 2014, 69(7):1002-1012. doi: 10.11821/dlxb201407012 [31] 邹进上, 曹彩珠.青藏高原降雪的气候学分析.大气科学, 1989, 13(4):400-409. http://www.cnki.com.cn/Article/CJFDTOTAL-DQXK198904002.htm [32] 林志强, 假拉, 薛改萍, 等.1980-2010年西藏高原大到暴雪的时空分布和环流特征.高原气象, 2014, 33(4):900-906. doi: 10.7522/j.issn.1000-0534.2013.00069 [33] 索渺清, 丁一汇.南支槽与孟加拉湾风暴结合对一次高原暴雪过程的影响.气象, 2014, 40(9):1033-1047. doi: 10.7519/j.issn.1000-0526.2014.09.001 [34] 柳龙生, 李英, 赵毅勇.孟加拉湾风暴费林 (1302) 对藏南一次暴雪过程的影响分析.气象, 2015, 41(9):1079-1085. http://www.cnki.com.cn/Article/CJFDTOTAL-QXXX201509004.htm [35] 马林, 李锡福, 张青梅, 等.青藏高原东部牧区冬季雪灾天气的形成及其预报.高原气象, 2001, 20(3):331-325. [36] 孙晶, 楼小凤, 胡志晋.祁连山冬季降雪个例模拟分析 (Ⅰ):降雪过程和地形影响.高原气象, 2009, 28(3):485-495. http://www.cnki.com.cn/Article/CJFDTOTAL-GYQX200903002.htm [37] 时兴合, 李凤霞, 扎西才让, 等.1961-2004年青海积雪及雪灾变化.应用气象学报, 2006, 17(3):376-382. http://qikan.camscma.cn/jams/ch/reader/view_abstract.aspx?file_no=20060364&flag=1 [38] 丁永红, 冯建民, 马筛艳, 等.宁夏降雪日数的气候特征和环流结构.气象, 2012, 38(12):1523-1531. http://www.cnki.com.cn/Article/CJFDTOTAL-QXXX201212011.htm [39] 魏凤英.现代气候统计诊断与预测技术.北京:气象出版社, 2007. [40] 张强, 张杰, 孙国武, 等.祁连山山区空中水汽分布特征研究.气象学报, 2007, 65(4):633-643. doi: 10.11676/qxxb2007.058 [41] 胡豪然, 彭骏, 毛晓亮.青藏高原地面站春季积雪日数的时空演变特征.资源科学, 2010, 32(1):149-156. http://www.cnki.com.cn/Article/CJFDTOTAL-ZRZY201001022.htm [42] 李培基.中国西部积雪的变化特征.地理学报, 1993, 48(6):505-515. http://www.cnki.com.cn/Article/CJFDTOTAL-DLXB199306003.htm [43] 柯长青, 李培基.青藏高原积雪分布与变化特征.地理学报, 1998, 53(3):209-215. http://www.cnki.com.cn/Article/CJFDTOTAL-DLXB803.002.htm [44] 韦志刚, 黄荣辉, 陈文, 等.青藏高原地面站积雪的空间分布和年代际变化特征.大气科学, 2002, 26(4):496-506. http://www.cnki.com.cn/Article/CJFDTOTAL-DQXK200204006.htm