The Wind Measuring Performance of WINDCUBE V2 Pulse Laser Wind Profiler Under Different Weather Conditions
-
摘要: 将2012年5月21日-8月16日广东省湛江市东海岛气象观测站内脉冲激光风廓线仪WINDCUBE V2与气象站内的100 m测风塔进行同步观测试验,在经过观测数据同步性调整、有效性检验和代表性样本筛选基础上,分大小风和有无降雨天气过程,对杯式测风仪、超声风速仪与激光风廓线仪的同步测风数据进行比较,结果显示:脉冲激光风廓线仪与杯式测风仪测量水平风参数的相关性较好,10 min平均风速、风向的线性拟合度均大于0.99,3 s阵风风速的拟合度大于0.96,湍流强度的拟合度大于0.67,风速标准差的拟合度大于0.79;大风情况下,激光风廓线仪对风参数的测量效果更佳。无降雨情况下,激光风廓线仪的测量效果较降雨时略好,10 min降水量小于15 mm的降雨对这款激光风廓线仪的风速、风向、湍流强度、3 s阵风风速的测量没有显著影响,对风速标准差有一定影响。当水平风速增大和有降雨时,激光风廓线仪对垂直速度的测量效果欠佳。该对比分析可为激光风廓线仪观测数据的可靠性提供参考。Abstract: The wind data observed by the gradient wind observation system set on 100 m high tower in Donghai Island meteorology station located in Zhanjiang, Guangdong Province are compared with the wind data measured by WINDCUBE V2 pulse laser wind profiler installed at the same site from 21 May to 16 August in 2012. Based on time synchronization adjustment, validity test and sample selection, a comparative analysis is conducted using several wind parameters observed at heights of 50 m, 65 m, 70 m, 100 m by cup anemometer, ultrasonic anemometer and WINDCUBE V2 under weak wind, strong wind, sunny and rainy days.Results show that fitting degrees of horizontal wind parameters are quite good. Fitting degrees of wind speed and wind direction measured by WINDCUBE V2 and cup anemometer are up to more than 0.99. The fitting degree of 3 s gust wind speed is over 0.96. Fitting degrees of 3 s gust wind speed, turbulence intensity and wind speed standard deviation are over 0.96, 0.67 and 0.79, respectively. The WINDCUBE V2 performs a little better under strong wind and no rainfall condition when measuring the above wind parameters. Fitting degrees of wind speed and wind direction of strong wind samples are a litter larger than that of weak wind samples. More than 90% strong wind speed relative deviation vary between-4.5% and 2.5% while more than 90% wind speed relative deviation vary between-11.5% and 5.5% under weak wind condition. Overall, the precipitation has no obvious influence on the measurement of wind speed, wind direction, turbulence intensity and gust wind speed by WINDCUBE V2 when the 10 min rainfall intensity is less than 15 mm while measurements of wind speed standard deviation are a bit influenced by precipitation. Fitting degrees of wind speed and wind direction of samples without rain are a litter larger than that on rainy days, but both are over 0.99. The WINDCUBE V2 performs weaker at the vertical airflow velocity measurement under the increasing of horizontal wind speed and the precipitation. The fitting degree of vertical airflow velocity is 0.872 when the horizontal wind speed is between 0-1.5 m·s-1. But the fitting degree of vertical airflow velocity decreases to 0.25 when the horizontal wind speed increases to 0-6 m·s-1. The vertical airflow velocity measured by WINDCUBE V2 decreases more significantly with the stronger rainfall. When 1 min rainfall intensity is over 0.5 mm, the vertical airflow velocity measured by WINDCUBE V2 is found to be 4 m·s-1 less than the measurement of ultrasonic anemometer. These results can provide some technical references for the reliability test method of laser wind profiler measured data.
-
图 3 100 m高度层大小风样本的风参数散点图及拟合线 (红点和实线:小风样本及拟合线;蓝点和虚线:大风样本及拟合线)
(a) 风速, (b) 风向, (c) 湍流强度, (d) 阵风风速, (e) 风速标准差
Fig. 3 Scatter plot of wind parameters and the fitting curve of samples of weak wind and strong wind observed at 100 m height (red dot and solid line denote weak wind and the linear fitting line; blue dot and dashed line denote strong wind and linear fitting line)
(a) wind speed, (b) wind direction, (c) turbulence intensity, (d) gust wind speed, (e) wind speed standard deviation
图 5 100 m高度层有无降雨样本风参数散点图及拟合线 (红点和实线:降雨样本及拟合线;蓝点和虚线:无降雨样本及拟合线)
(a) 风速, (b) 风向, (c) 湍流强度, (d) 阵风风速, (e) 风速标准差
Fig. 5 Scatter plot of wind parameters and the fitting curve of samples with and without rain at 100 m (red dot and solid line:samples with rain and the linear fitting line; blue dot and dashed line: samples without rain and linear fitting line)
(a) wind speed, (b) wind direction, (c) turbulence intensity, (d) gust wind speed, (e) wind speed standard deviation
表 1 脉冲激光风廓线仪参数表
Table 1 Specifications of WINDCUBE V2 Lidar
参数名称 数值 测量高度范围 40~300 m 数据采样频率 1 s 采样长度 20 m 扫描锥角度 28° 风速分辨率 0.1 m·s-1 环境温度范围 -45~50℃ 光波波长 1.54 μm 发射频率 30000 Hz 风速测量范围 0~80 m·s-1 风向分辨率 1° 表 2 脉冲激光风廓线仪与杯式测风仪总体样本的风参数拟合参数及偏差
Table 2 Results of regression analysis for wind parameters measured by lider and cup anemometer
风参数 高度/m 拟合直线斜率 拟合直线截距 拟合度 偏差平均值 偏差标准差 50 0.990 0.000 0.994 -0.060 m·s-1 0.172 m·s-1 10 min风速 70 1.000 -0.040 0.997 -0.041 m·s-1 0.129 m·s-1 100 0.998 -0.074 0.997 -0.088 m·s-1 0.127 m·s-1 50 1.012 1.152 0.997 2.810° 3.203° 10 min风向 70 1.012 9.870 0.996 11.440° 3.741° 100 1.003 11.156 0.997 11.678° 3.295° 50 0.844 0.032 0.670 0.011 0.033 湍流强度 70 1.045 0.009 0.777 0.014 0.030 100 1.047 0.012 0.769 0.017 0.032 50 1.039 0.055 0.968 0.347 m·s-1 0.519 m·s-1 3 s阵风风速 70 1.035 0.110 0.967 0.378 m·s-1 0.538 m·s-1 100 1.032 0.098 0.961 0.348 m·s-1 0.576 m·s-1 50 1.030 0.039 0.875 0.062 m·s-1 0.120 m·s-1 风速标准差 70 1.031 0.054 0.840 0.075 m·s-1 0.127 m·s-1 100 1.092 0.041 0.797 0.092 m·s-1 0.136 m·s-1 表 3 脉冲激光风廓线仪与杯式测风仪测得的大小风样本的风参数拟合参数及偏差
Table 3 Results of regression analysis for wind parameters measured by lider and cup anemometer for samples of weak wind and strong wind
风参数 高度/m 风速样本 拟合直线斜率 拟合直线截距 拟合度 偏差平均值 偏差标准差 10 min风速 50 小风 0.947 0.173 0.975 -0.049 m·s-1 0.180 m·s-1 大风 1.009 -0.147 0.989 -0.073 m·s-1 0.160 m·s-1 70 小风 0.992 -0.007 0.989 -0.043 m·s-1 0.115 m·s-1 大风 1.000 -0.041 0.993 -0.038 m·s-1 0.142 m·s-1 100 小风 0.971 0.047 0.987 -0.080 m·s-1 0.128 m·s-1 大风 1.009 -0.171 0.995 -0.095 m·s-1 0.125 m·s-1 10 min风向 50 小风 1.011 1.522 0.996 3.131° 3.933° 大风 1.012 0.861 0.999 2.390° 1.770° 70 小风 1.010 10.193 0.994 11.656° 4.975° 大风 1.013 9.594 0.999 11.216° 1.650° 100 小风 1.004 11.259 0.995 11.893° 4.556° 大风 1.003 11.155 0.999 11.501° 1.616° 湍流强度 50 小风 0.827 0.035 0.645 0.010 0.042 大风 0.937 0.019 0.777 0.011 0.014 70 小风 1.035 0.014 0.749 0.018 0.038 大风 0.992 0.011 0.829 0.010 0.014 100 小风 1.006 0.022 0.716 0.022 0.045 大风 1.062 0.007 0.839 0.012 0.014 3 s阵风风速 50 小风 1.046 0.017 0.899 0.273 m·s-1 0.498 m·s-1 大风 1.034 0.108 0.932 0.443 m·s-1 0.531 m·s-1 70 小风 1.063 -0.024 0.877 0.326 m·s-1 0.528 m·s-1 大风 1.048 -0.044 0.939 0.431 m·s-1 0.542 m·s-1 100 小风 1.061 -0.022 0.837 0.314 m·s-1 0.588 m·s-1 大风 1.057 -0.183 0.939 0.376 m·s-1 0.565 m·s-1 风速标准差 50 小风 1.088 0.000 0.760 0.051 m·s-1 0.130 m·s-1 大风 0.946 0.128 0.865 0.076 m·s-1 0.104 m·s-1 70 小风 1.154 -0.002 0.746 0.076 m·s-1 0.142 m·s-1 大风 0.983 0.087 0.862 0.073 m·s-1 0.110 m·s-1 100 小风 1.224 -0.011 0.709 0.092 m·s-1 0.160 m·s-1 大风 1.045 0.064 0.849 0.091 m·s-1 0.114 m·s-1 表 4 脉冲激光风廓线仪与杯式测风仪测得的有无降雨样本的风参数拟合参数及偏差
Table 4 Results of regression analysis for wind parameters measured by lider and cup anemometer for samples with and without rain
风参数 高度/m 风速样本 拟合直线斜率 拟合直线截距 拟合度 偏差平均值 偏差标准差 10 min风速 50 无降雨 0.992 -0.019 0.994 -0.066 m·s-1 0.166 m·s-1 有降雨 0.971 0.219 0.993 0.032 m·s-1 0.238 m·s-1 70 无降雨 1.001 -0.051 0.997 -0.044 m·s-1 0.122 m·s-1 有降雨 0.984 0.143 0.995 0.034 m·s-1 0.212 m·s-1 100 无降雨 0.999 -0.095 0.998 -0.096 m·s-1 0.118 m·s-1 有降雨 0.987 0.075 0.996 -0.020 m·s-1 0.184 m·s-1 10 min风向 50 无降雨 1.012 1.103 0.997 2.847° 3.085° 有降雨 1.000 2.687 0.992 2.650° 5.451° 70 无降雨 1.012 9.751 0.998 11.465° 2.984° 有降雨 1.005 10.240 0.995 10.904° 4.457° 100 无降雨 1.004 11.167 0.997 11.693° 3.238° 有降雨 1.001 11.714 0.995 11.798° 4.658° 湍流强度 50 无降雨 0.865 0.029 0.653 0.011 0.033 有降雨 0.761 0.042 0.848 0.003 0.045 70 无降雨 1.070 0.006 0.777 0.014 0.029 有降雨 0.893 0.031 0.817 0.016 0.045 100 无降雨 1.080 0.009 0.789 0.017 0.030 有降雨 0.897 0.038 0.711 0.026 0.058 3 s阵风风速 50 无降雨 1.041 0.030 0.970 0.336 m·s-1 0.505 m·s-1 有降雨 1.021 0.392 0.941 0.573 m·s-1 0.845 m·s-1 70 无降雨 1.036 0.093 0.970 0.365 m·s-1 0.507 m·s-1 有降雨 1.021 0.514 0.932 0.701 m·s-1 0.931 m·s-1 100 无降雨 1.033 0.068 0.966 0.273 m·s-1 0.498 m·s-1 有降雨 1.000 0.816 0.908 0.443 m·s-1 0.531 m·s-1 风速标准差 50 无降雨 1.032 0.038 0.877 0.062 m·s-1 0.118 m·s-1 有降雨 1.002 0.063 0.847 0.065 m·s-1 0.160 m·s-1 70 无降雨 1.035 0.051 0.846 0.073 m·s-1 0.123 m·s-1 有降雨 0.950 0.151 0.763 0.110 m·s-1 0.196 m·s-1 100 无降雨 1.093 0.038 0.807 0.089 m·s-1 0.130 m·s-1 有降雨 0.985 0.178 0.679 0.167 m·s-1 0.229 m·s-1 -
[1] Song Lili, Chen Wenchao, Wang Binglan, et al.Characteristics of wind profiles in the landing typhoon boundary layer.J Wind Eng Ind Aerodyn, 2016, 149:77-88. doi: 10.1016/j.jweia.2015.11.008 [2] 中华人民共和国住房和城乡建设部. 建设结构荷载规范 (GB 50009-2012). 北京: 中国建筑工业出版社, 2012. [3] 张容焱, 张秀芝, 杨校生, 等.台风莫拉克 (0908) 影响期间近地层风特性.应用气象学报, 2012, 23(2):184-194. doi: 10.11898/1001-7313.20120207 [4] 王青梅, 张以谟.气象激光雷达的发展现状.气象科技, 2006, 34(3):246-249. http://www.cnki.com.cn/Article/CJFDTOTAL-QXKJ200603001.htm [5] 陈元昭, 俞小鼎, 陈训来, 等.2015年5月华南一次龙卷过程观测分析.应用气象学报, 2016, 27(3):334-341. doi: 10.11898/1001-7313.20160308 [6] 王志春, 植石群, 丁凌云.强台风纳沙 (1117) 近地层风特性观测分析.应用气象学报, 2013, 24(5):595-605. doi: 10.11898/1001-7313.20130509 [7] 魏应植, 汤达章, 许健民, 等.多普勒雷达探测"艾利"台风风场不对称结构.应用气象学报, 2007, 18(3):285-294. http://qikan.camscma.cn/jams/ch/reader/view_abstract.aspx?file_no=20070350&flag=1 [8] 李明华, 范绍佳, 王宝民, 等.珠江三角洲秋季大气边界层温度和风廓线观测研究.应用气象学报, 2008, 19(1):53-60. doi: 10.11898/1001-7313.20080110 [9] 夏俊荣, 王普才, 闵敏.新型多普勒测风激光雷达Windcube的风参数观测与验证.气候与环境研究, 2011, 6(6):733-741. http://www.cnki.com.cn/Article/CJFDTOTAL-QHYH201106009.htm [10] Canadillas B, Westerhellweg A, Neumann T, et al.Testing the Performance of a Ground-based Wind LiDAR System.DEWI MAGAZIN, 2011. [11] Gottschall J L, Michael S C.WINDCUBE V2 WLS7-0091 Lidar Verification Test at Høvsøre Test Site.Risø-I-3080(EN), 2010. [12] 郑启明, 罗元隆, 王军翰. 自然风场特性之实场量测与风洞模拟//第十六届全国结构风工程会议论文集. 成都: 西南交通大学出版社, 2013: 461-468. [13] 中国气象局.地面气象观测规范.北京:气象出版社, 2003. [14] 宋丽莉, 陈雯超, 黄浩辉.工程抗台风研究中风观测数据的可靠性和代表性判别.气象科技进展, 2011, 1(1):33-37. http://www.cnki.com.cn/Article/CJFDTOTAL-QXKZ201101009.htm [15] Song L L, Li Q S, Chen W C, et al.Wind characteristics of a strong typhoon in marine surface boundary layer.Wind and Structures, 2012, 15(1):1-15. doi: 10.12989/was.2012.15.1.001 [16] 盛裴轩, 毛节泰, 李建国, 等.大气物理学.北京:北京大学出版社, 2003. [17] 项海帆, 林志兴, 鲍卫刚, 等.公路桥梁抗风设计指南.北京:人民交通出版社, 1996. [18] Architectural Institute of Japan.Recommendations for Loads on Buildings (AIJ-RLB-2004).Tokyo, 2004. [19] ASCE.Minimum Design Loads for Buildings and Other Structures, Reston, VA, ASCE/SEI 7-05, New York, 2006. [20] Buildings Department.Code of Practice for Wind Effects in Hong Kong, Buildings Department of Hong Kong, 2004. [21] 邓闯, 阮征, 魏鸣, 等.风廓线雷达测风精度评估.应用气象学报, 2012, 23(5):523-533. doi: 10.11898/1001-7313.20120502 [22] 林晓萌, 何平, 黄兴友.一种抑制降水对风廓线雷达水平风干扰的方法.应用气象学报, 2015, 26(1):66-75. http://qikan.camscma.cn/jams/ch/reader/view_abstract.aspx?file_no=20150107&flag=1 [23] 何平, 朱小燕, 阮征.风廓线雷达探测降水过程的初步研究.应用气象学报, 2009, 20(4):465-470. doi: 10.11898/1001-7313.200904011 [24] 潘乃先, 郑毅.风对多普勒声雷达测风的某些影响.北京大学学报 (自然科学版), 1986, 22(1):98-105. http://www.cnki.com.cn/Article/CJFDTOTAL-BJDZ198601009.htm