留言板

尊敬的读者、作者、审稿人, 关于本刊的投稿、审稿、编辑和出版的任何问题, 您可以本页添加留言。我们将尽快给您答复。谢谢您的支持!

姓名
邮箱
手机号码
标题
留言内容
验证码

闪电初始阶段和尺度判别方法及其特征

张志孝 郑栋 张义军 陆高鹏

张志孝, 郑栋, 张义军, 等. 闪电初始阶段和尺度判别方法及其特征. 应用气象学报, 2017, 28(4): 414-426. DOI: 10.11898/1001-7313.20170403..
引用本文: 张志孝, 郑栋, 张义军, 等. 闪电初始阶段和尺度判别方法及其特征. 应用气象学报, 2017, 28(4): 414-426. DOI: 10.11898/1001-7313.20170403.
Zhang Zhixiao, Zheng Dong, Zhang Yijun, et al. Identification method and analysis on lightning flash initiation phase and size. J Appl Meteor Sci, 2017, 28(4): 414-426. DOI:  10.11898/1001-7313.20170403.
Citation: Zhang Zhixiao, Zheng Dong, Zhang Yijun, et al. Identification method and analysis on lightning flash initiation phase and size. J Appl Meteor Sci, 2017, 28(4): 414-426. DOI:  10.11898/1001-7313.20170403.

闪电初始阶段和尺度判别方法及其特征

DOI: 10.11898/1001-7313.20170403
资助项目: 

国家自然科学基金项目 41675005

国家自然科学基金项目 91537209

中国气象科学研究院基本科研业务费重点项目 2016Z002

详细信息
    通信作者:

    郑栋, email:zhd@camscma.cn

Identification Method and Analysis on Lightning Flash Initiation Phase and Size

  • 摘要: 基于LMA三维闪电定位数据,对2004年10月5日发生于美国新墨西哥州的一次超级单体过程的闪电初始及其尺度特征进行研究,提出闪电初始阶段自动判别及其特征参量提取方法,并给出参量分布特征。结果显示:闪电初始阶段上行负先导(下行负先导)的持续时间中值为13.5 ms(7.5 ms),三维位移中值为1.4 km(1.0 km),三维平均位移速度中值为9.2×104 m·s-1(1.2×105 m·s-1),上行负先导速度随时间递减,下行反之,二者与垂直方向夹角的中值分别为40°和54°。表征闪电尺度的闪电凸壳面积和闪电总长度的概率密度呈负幂函数分布,在小值方向分布更为集中。闪电水平延展距离中值为6.1 km,垂直延展距离中值为4.3 km,约83%的闪电其水平延展距离大于垂直延展距离;闪电的持续时间中值为271.0 ms。分析发现,以水平延展为主的闪电起始高度分布峰值位于8.5 km,以垂直延展为主的闪电起始高度分布峰值位于11 km。闪电初始阶段位移方向越接近水平,对应闪电垂直延展越小,说明闪电初始段的传播方向对于闪电垂直延展具有重要影响。
  • 图  1  阿尔伯克基WSR-88D雷达和LMA系统探测范围示意图

    Fig. 1  The diagram of Albuquerque WSR-88D radar and LMA detection range

    图  2  闪电初始阶段自动识别方法示例

    (a)闪电起始位置确定,(b)3 ms时间间隔内辐射源的平均高度求解,(c)相邻辐射源高度滑动平均,(d)依据斜率特征判定初始段结束位置

    Fig. 2  The diagram of flash initiation identification method

    (a)the initial point determined, (b)average heights of sources in every 3 ms temporal span calculated, (c)the curve smoothed by every five adjacent points, (d)the end time of flash initiation determined based on the slope curve

    图  3  闪电尺度表征方法示例

    (a)甚高频辐射源水平分布,(b)甚高频辐射源三维分布,(c)辐射源高度时间分布

    Fig. 3  The diagram of methods describing flash size

    (a)horizontal distribution of VHF sources, (b)three-dimensional distribution of VHF sources, (c)height-time distribution of VHF sources

    图  4  超级单体过程中闪电活动的时序演变

    (a)甚高频辐射源频次,(b)闪电频次,(c)平均闪电凸壳面积(统计时间间隔5 min)

    Fig. 4  Temporal evolution of flash activity in the supercell

    (a)rate of VHF sources, (b)flash rate, (c)average flash convex hull (the temporal span is 5 min)

    图  5  闪电初始阶段特征参量概率密度分布

    (a)持续时间,(b)三维位移,(c)平均三维位移速度,(d)位移方向与垂直方向夹角

    Fig. 5  Probability density distribution of characteristic parameters in initiation stage

    (a)initiation duration time, (b)3-D displacement, (c)average 3-D displacement velocity, (d)angle between flash initiation displacement and vertical direction

    图  6  闪电初始阶段平均三维位移速度的时序演变

    Fig. 6  Temporal evolution of 3-D displacement velocity in initiation stage of flashes

    图  7  闪电初始特征参量间关系

    (a)闪电起始高度与闪电初始三维位移速度,(b)垂直夹角与三维位移

    Fig. 7  Relationship between parameters in flash initiation stage

    (a)initiation height VS 3-D displacement velocity, (b)vertical angle VS 3-D displacement

    图  8  闪电尺度特征参数概率密度分布

    (a)闪电凸壳面积,(b)闪电通道总长度,(c)闪电延展的最大水平距离,(d)闪电延展的最大垂直距离

    Fig. 8  Probability density distribution of parameters describing flash size

    (a)area of flash convex hull, (b)total length of flash channels, (c)horizontal extent of flash, (d)vertical extent of flash

    图  9  闪电初始和尺度不同特征参量间关系

    (a)闪电水平延展距离与垂直延展距离散点密度分布(只显示每个格点闪电个数大于6的数据,格点大小为1 km×1 km),(b)闪电通道总长度与闪电凸壳面积的散点分布

    Fig. 9  Relationship between parameters of flash initiation and size

    (a)flash horizontal extent and flash vertical extent(grids where flash number is larger than 6 are displayed, and the statistical grid size is 1 km×1 km), (b)distribution of total channel length and flash convex hull

    图  10  水平闪电和垂直闪电的分布特征

    (a)水平和垂直闪电起始高度概率密度分布,(b)闪电初始段位移与垂直方向夹角与闪电延展距离关系

    Fig. 10  Distribution of horizontal flash and vertical flash

    (a)probability density distribution of initiation height of horizontal flash and vertical flash, (b)relationship between initiation vertical angle and flash extent

    表  1  闪电初始阶段特征参量的参数统计

    Table  1  Statistics of parameters in initiation stage of flashes

    统计项目平均值中值标准差最大值最小值
    上行持续时间/ms16.213.59.365.11.5
    下行持续时间/ms9.97.55.836.01.5
    上行三维位移/km1.61.41.05.90.1
    下行三维位移/km1.31.01.05.90.1
    上行垂直位移/km1.00.90.75.20.03
    下行垂直位移/km0.70.50.63.60.08
    上行三维速度/(105 m·s-1)1.10.90.74.00.10
    下行三维速度/(105 m·s-1)1.51.20.94.00.13
    上行垂直夹角/(°)40.340.217.585.51.3
    下行垂直夹角/(°)52.054.319.283.12.4
    下载: 导出CSV

    表  2  闪电尺度特征参量的参数统计

    Table  2  Statistics of parameters describing flash size

    统计项目平均值中值标准差最大值最小值
    凸壳面积/km220.38.239.4522.80.01
    通道总长度/km43.422.361.4695.40.7
    延展的最大水平距离/km7.16.14.539.30.2
    延展的最大垂直距离/km4.64.32.314.00.3
    持续时间/ms329.1271.0226.71798.84.2
    下载: 导出CSV
  • [1] 王艳, 张义军, 马明.卫星观测的我国近海海域闪电分布特征.应用气象学报, 2010, 21(2):157-163. doi:  10.11898/1001-7313.20100204
    [2] 王婷波, 郑栋, 张义军, 等.基于大气层结和雷暴演变的闪电和降水关系.应用气象学报, 2014, 25(1):33-41. doi:  10.11898/1001-7313.20140104
    [3] 郑栋, 孟青, 吕伟涛, 等.北京及其周边地区夏季地闪活动时空特征分析.应用气象学报, 2005, 16(5):638-644. doi:  10.11898/1001-7313.20050510
    [4] 张阳, 张义军, 孟青, 等.北京地区正地闪时间分布及波形特征.应用气象学报, 2010, 21(4):442-449. doi:  10.11898/1001-7313.20100407
    [5] 郑栋, 张义军, 孟青, 等.北京地区雷暴过程闪电与地面降水的相关关系.应用气象学报, 2010, 21(3):287-297. doi:  10.11898/1001-7313.20100304
    [6] 张义军, 孟青, 马明, 等.闪电探测技术发展和资料应用.应用气象学报, 2006, 17(5):611-620. doi:  10.11898/1001-7313.20060504
    [7] Karunarathne S, Marshall T C, Stolzenburg M, et al.Locating initial breakdown pulses using electric field change network.Journal of Geophysical Research:Atmospheres, 2013, 118(13):7129-7141. doi:  10.1002/jgrd.50441
    [8] Marshall T, Stolzenburg M, Karunarathne S, et al.Initial breakdown pulses in intracloud lightning flashes and their relation to terrestrial gamma ray flashes.Journal of Geophysical Research:Atmospheres, 2013, 118(19):10907-10925. doi:  10.1002/jgrd.50866
    [9] Stolzenburg M, Marshall T C, Karunarathne S, et al.Luminosity of initial breakdown in lightning.Journal of Geophysical Research:Atmospheres, 2013, 118(7):2918-2937. doi:  10.1002/jgrd.50276
    [10] Shao X M, Krehbiel P R.The spatial and temporal development of intracloud lightning.Journal of Geophysical Research:Atmospheres, 1996, 1012(21):26641-26668. https://www.researchgate.net/publication/252728635_The_spatial_and_temporal_development_of_intracloud_lightning
    [11] Behnke S A, Thomas R J, Krehbiel P R, et al.Initial leader velocities during intracloud lightning:Possible evidence for a runaway breakdown effect.J Geophys Res, 2005, 110(10):1187-1203. https://www.researchgate.net/publication/229020596_Initial_leader_velocities_during_intracloud_lightning_Possible_evidence_for_a_runaway_breakdown_effect
    [12] Wu T, Yoshida S, Akiyama Y, et al.Preliminary breakdown of intracloud lightning:Initiation altitude, propagation speed, pulse train characteristics, and step length estimation.Journal of Geophysical Research:Atmospheres, 2015, 120(18):9071-9086. doi:  10.1002/2015JD023546
    [13] Zheng D, MacGorman D R.Characteristics of flash initiations in a supercell cluster with tornadoes.Atmospheric Research, 2016, 167:249-264. doi:  10.1016/j.atmosres.2015.08.015
    [14] Wu B, Zhang G, Wen J, et al.Correlation analysis between initial preliminary breakdown process, the characteristic of radiation pulse, and the charge structure on the Qinghai-Tibetan Plateau.Journal of Geophysical Research:Atmospheres, 2016, 121(20), 12434-12460. doi:  10.1002/2016JD025281
    [15] Bruning E C, MacGorman D R.Theory and observations of controls on lightning flash size spectra.Journal of the Atmospheric Sciences, 2013, 70(12):4012-4029. doi:  10.1175/JAS-D-12-0289.1
    [16] Chronis T, Lang T, Koshak W, et al.Diurnal characteristics of lightning flashes detected over the Sao Paulo lightning mapping array.Journal of Geophysical Research:Atmospheres, 2015, 120(23):11799-11808. doi:  10.1002/2015JD023960
    [17] Koshak W, Peterson H, Biazar A, et al.The NASA Lightning Nitrogen Oxides Model (LNOM):Application to air quality modeling.Atmospheric Research, 2014, 135:363-369. https://www.researchgate.net/publication/262989448_The_NASA_Lightning_Nitrogen_Oxides_Model_LNOM_Application_to_air_quality_modeling
    [18] Zhang R, Zhang G, Li Y, et al.Estimate of NOX production in the lightning channel based on three-dimensional lightning locating system.Science China Earth Sciences, 2014, 57(7):1613-1625. doi:  10.1007/s11430-013-4812-1
    [19] Calhoun K M, MacGorman D R, Ziegler C L, et al.Evolution of lightning activity and storm charge relative to dual-doppler analysis of a high-precipitation supercell storm.Mon Wea Rev, 2013, 141(7):2199-2223. doi:  10.1175/MWR-D-12-00258.1
    [20] Thomas R J, Krehbiel P R, Rison W, et al.Accuracy of the Lightning Mapping Array.Journal of Geophysical Research: Atmospheres, 2004, 109(14):1149-1165. https://www.researchgate.net/publication/251679679_Llewelyn_Ralph_Twentyman_6_June_1914-29_April_2010
    [21] Krehbiel P R, Thomas R J, Rison W, et al.GPS-based mapping system reveals lightning inside storms.Eos Transactions American Geophysical Union, 2000, 81(3):21-25. doi:  10.1029/00EO00014
    [22] MacGorman D R, Rust W D, Schuur T J, et al.TELEX-The Thunderstorm Electrification and Lightning Experiment.Bull Amer Meteor Soc, 2008, 89(7):997-1013. doi:  10.1175/2007BAMS2352.1
    [23] Rison W, Thomas R J, Krehbiel P R, et al.A GPS-based three-dimensional lightning mapping system:Initial observations in Central New Mexico.Geophys Res Lett, 1999, 26(23):3573-3576. doi:  10.1029/1999GL010856
    [24] Lund N R, MacGorman D R, Schuur T J, et al.Relationships between lightning location and polarimetric radar signatures in a small mesoscale convective system.Mon Wea Rev, 2009, 137(12):4151-4170. doi:  10.1175/2009MWR2860.1
    [25] Coleman L M, Marshall T C, Stolzenburg M, et al.Effects of charge and electrostatic potential on lightning propagation.Journal of Geophysical Research:Atmospheres, 2003, 108(9):1601-1612. https://www.researchgate.net/publication/259255528_The_Effects_of_Charge_and_Electrostatic_Potential_on_Lightning_Propagation
    [26] 刘恒毅, 董万胜, 徐良韬, 等.闪电起始过程时空特征的宽带干涉仪三维观测.应用气象学报, 2016, 27(1):16-24. doi:  10.11898/1001-7313.20160102
    [27] 李俊, 吕伟涛, 张义军, 等.一次多分叉多接地的空中触发闪电过程.应用气象学报, 2010, 21(1):95-100. doi:  10.11898/1001-7313.20100113
    [28] 张荣, 张广庶, 王彦辉, 等.青藏高原东北部地区闪电特征初步分析.高原气象, 2013, 32(3):673-681. doi:  10.7522/j.issn.1000-0534.2013.00083
    [29] Lang T J, Pédeboy S, Rison W, et al.WMO world record lightning extremes:Longest reported flash distance and longest reported flash duration.Bull Amer Meteor Soc, 2016, DOI: 10.1175/BAMS-D-16-0061.1.
  • 加载中
图(10) / 表(2)
计量
  • 摘要浏览量:  4055
  • HTML全文浏览量:  1232
  • PDF下载量:  601
  • 被引次数: 0
出版历程
  • 收稿日期:  2017-02-13
  • 修回日期:  2017-05-16
  • 刊出日期:  2017-07-31

目录

    /

    返回文章
    返回