Seasonal Relationships Between Tropospheric Ozone and Its Precursors over East Asia
-
摘要: 利用2010—2012年对流层臭氧(O3)及其多种前体物的卫星遥感资料和全球水汽再分析资料,研究东亚区域O3及其前体物的时空分布,以及在中国东部(分为南、北两部分)相关性的季节变化。结果表明:东亚区域NO2与CO的对流层柱含量均表现为冬季高、夏季低的时空变化形式。O3对流层柱含量夏季达到峰值,冬季为谷值。中国东部的北部与南部地区O3与NO2均在夏秋季呈正相关,冬春季呈负相关。夏季大部分地区NOx的光化学循环反应对O3生成有积极的促进作用,冬季大部分地区O3的光化学循环生成受到抑制。O3与CO在北部地区夏秋季和南部地区夏季正相关性最大,无论是在北部还是南部地区,O3与CO的相关性在轻污染情况下最大,而在重污染和背景情况下较小,表明重污染气团向下风方的输送更有利于O3的光化学生成。O3与水汽在北部和南部地区的多数时间均呈较显著的正相关性,而在南部地区夏季和北部地区冬季具有较大的负相关性,反映出不同的环流形式、气团来源及伴随的天气条件变化对O3分布的影响。Abstract: Satellite data of ozone with its various precursors and global reanalysis products of vapor throughout 2010 and 2012 are used to evaluate spatial-temporal variations of tropospheric ozone and its various precursors over East Asia with their correlations over East China. Northern and southern regions of East China are treated separately in order to address Asian Summer Monsoon's different influences on these two regions. It shows that the tropospheric column densities of NO2 and CO are high in winter, while low in summer. The tropospheric column density of ozone reaches its maximum and minimum in summer and winter, respectively. Correlations between ozone and NO2 varies similarly with seasons change, appearing positive in summer and autumn, while negative in winter and spring over both regions. There are significantly positive correlations between ozone and NO2 over both northern and southern regions during summer, which demonstrates due to the strong sunlight, NO2 appears short life-time and declined densities, thus the NOx-involved photochemical cycles produce ozone actively in summer. The negative correlations during winter result from the depression of ozone photochemical cycles due to long life-time and high densities of NO2 over most regions, especially in the northern region with much more heating emissions, leading to ozone depletion by NO. Owing to the transport of polluted air masses to the downwind directions, positive correlations between ozone and CO reach the maximum in summer and autumn over the northern region and summer over the southern region. There are slightly negative correlations between ozone and CO over the northern region in winter and over the southern region in summer, because CO reaches maximum companioned with the enhancement of NO that has the titration effect to deplete ozone. In addition, stratospheric intrusion might also cause inverse correlations between ozone and CO. In most time over northern and southern regions, correlations between ozone and vapor appear highly positive, while they appear highly negative in summer over the southern region and in winter over the northern region. Although southwesterly vapor is usually companioned by pollutant transport and photochemical reaction increasing, air masses from the sea bring sufficient vapor and little ozone in summer over the southern region, and vapor in clean marine air masses may deplete ozone as well. The inverse tracing relationships between ozone and vapor possibly result from stable weather condition variations. In both regions, correlations become more significant under slightly pollution conditions, however, they are insignificant in the severely polluted and background regions, indicating that due to enhanced NO, ozone is depleted through titration effects over severely polluted regions, whereas ozone elevates with the weaker NO titration over the downwind slightly polluted regions.
-
Key words:
- ozone;
- precursors;
- regional pollution;
- satellite remote sensing
-
表 1 对流层O3分别与NO2,CO,水汽的线性相关系数
Table 1 Correlation coefficients of ozone with NO2, CO and vapour
区域 季节 O3与NO2 O3与CO O3与水汽 北部
(N=1953)春 -0.045* 0.160** 0.322** 夏 0.489** 0.453** 0.510** 秋 0.086** 0.446** 0.633** 冬 -0.245** -0.062** -0.356** 南部
(N=1449)春 -0.085** 0.066* 0.475** 夏 0.550** 0.500** -0.318** 秋 0.052* 0.216** 0.226** 冬 -0.104** 0.177** 0.253** 注:N为总样本量,*表示达到0.05显著性水平,**表示达到0.01显著性水平。 -
[1] Weinstock B, Niki H.Carbon monoxide balance in nature.Science, 1972, 176(4032):290-292. doi: 10.1126/science.176.4032.290 [2] Wofsy S C, McConnell J C, McElroy M B.Atmospheric CH4, CO, and CO2.J Geophys Res, 1972, 77(24):4477-4493. doi: 10.1029/JC077i024p04477 [3] IPCC.Intergovernmental Panel on Climate Change.2007. [4] Heck W W, Taylor O, Adams R, et al.Assessment of crop loss from ozone.J Air Pollut Control Ass, 1982, 32(4):353-361. doi: 10.1080/00022470.1982.10465408 [5] Lee D S, Holland M R, Falla N.The potential impact of ozone on materials in the UK.Atmos Environ, 1996, 30(7):1053-1065. doi: 10.1016/1352-2310(95)00407-6 [6] Shindell D, Kuylenstierna J C, Vignati E, et al.Simultaneously mitigating near-term climate change and improving human health and food security.Science, 2012, 335(6065):183-189. doi: 10.1126/science.1210026 [7] Levy H, Mahlman J, Moxim W, et al.Tropospheric ozone:The role of transport.J Geophys Res, 1985, 90(D2):3753-3772. doi: 10.1029/JD090iD02p03753 [8] Crutzen P J.Photochemical reactions initiated by and influencing ozone in unpolluted tropospheric air.Tellus A, 1974, 26(1-2):47-57. doi: 10.1111/tus.1974.26.issue-1-2 [9] Chameides W L, Walker J C.A time-dependent photochemical model for ozone near the ground.J Geophys Res, 1976, 81(3):413-420. doi: 10.1029/JC081i003p00413 [10] Fishman J, Solomon S, Crutzen P J.Observational and theoretical evidence in support of a significant in-situ photochemical source of tropospheric ozone.Tellus A, 1979, 31(5):432-446. doi: 10.1111/tus.1979.31.issue-5 [11] Seinfeld J H, Pandis S N.Atmospheric Chemistry and Physics:From Air Pollution to Climate Change.John Wiley & Sons, 2006. http://www.wiley.com/WileyCDA/WileyTitle/productCd-1118947401.html [12] Monks P S, Archibald A T, Colette A, et al.Tropospheric ozone and its precursors from the urban to the globalscale from air quality to short-lived climate forcer.Atmos Chem Phys, 2014, 15:8889-8973. http://www.research.lancs.ac.uk/portal/en/publications/-(d1dc2bb3-13e8-4cf5-a4ec-1eac91f25f7b).html [13] DingA J, Fu C B, Yang X Q, et al.Ozone and fine particle in the western Yangtze River Delta:An overview of 1 yr data at the SORPES station.Atmos Chem Phys, 2013, 13(11):5813-5830. doi: 10.5194/acp-13-5813-2013 [14] He Y, Uno I, Wang Z, et al.Significant impact of the East Asia monsoon on ozone seasonal behavior in the boundary layer of Eastern China and the west Pacific region.Atmos Chem Phys, 2008, 8(24):7543-7555. doi: 10.5194/acp-8-7543-2008 [15] Safieddine S, Boynard A, Hao N, et al.Tropospheric ozone variability during the East Asian summer monsoon as observed by satellite (IASI), aircraft (MOZAIC) and ground stations.Atmos Chem Phys, 2016, 16(16):10489-10500. doi: 10.5194/acp-16-10489-2016 [16] Zhao C, Wang Y, Yang Q, et al.Impact of East Asian summer monsoon on the air quality over China:View from space.J Geophys Res, 2010, 115(D9):1063. doi: 10.1029/2009JD012745/abstract [17] Yang Y, Liao H, Li J.Impacts of the East Asian summer monsoon on interannual variations of summertime surface-layer ozone concentrations over China.Atmos Chem Phys, 2014, 14(13):6867-6879. doi: 10.5194/acp-14-6867-2014 [18] 朱彬.东亚太平洋地区近地面臭氧的季节和年际变化特征及其与东亚季风的关系.大气科学学报, 2012, 35(5):513-523. http://www.cnki.com.cn/Article/CJFDTOTAL-NJQX201205004.htm [19] Ma J Z, Liu H L, Hauglustaine D.Summertime tropospheric ozone over China simulated with a regional chemical transport model 1.Model description and evaluation.J Geophys Res, 2002, 107(D22):ACH 27-1-ACH 27-13. https://www.researchgate.net/publication/248801926_Summertime_tropospheric_ozone_over_China_simulated_with_a_regional_chemical_transport_model_1_Model_description?_sg=VhgQyCg01oE_duIsPNpKcDr7IwpyXg0s2P7Nfllzh3GLYYLQUcDbw7k-Z-OksFCxuAQNY4vNJrkCQUulSi6VEA [20] Ma J Z, Zhou X J, Hauglustaine D.Summertime tropospheric ozone over China simulated with a regional chemical transport model 2.Source contributions and budget.J Geophys Res, 2002, 107(D22):ACH 2-1-ACH 2-11. https://www.researchgate.net/publication/248802489_Summertime_tropospheric_ozone_over_China_simulated_with_a_regional_chemical_transport_model_2_Source_contributions_and_budget [21] 徐晓斌, 林伟立.卫星观测的中国地区1979—2005年对流层臭氧变化趋势.气候变化研究进展, 2010, 6(2):100-105. http://www.cnki.com.cn/Article/CJFDTOTAL-QHBH201002007.htm [22] David L M, Nair P R.Diurnal and seasonal variability of surface ozone and NOx at a tropical coastal site:Association with mesoscale and synoptic meteorological conditions.J Geophys Res, 2011, 116(D10):2-3. http://www.researchgate.net/publication/228480619_Diurnal_and_seasonal_variability_of_surface_ozone_and_NOx_at_a_tropical_coastal_site_Association_with_mesoscale_and_synoptic_meteorological_conditions [23] Worden J, Jones D, Liu J, et al.Observed vertical distribution of tropospheric ozone during the Asian summertime monsoon.J Geophys Res, 2009, 114(D13):267-275. https://www.researchgate.net/profile/Jane_Liu4/publication/255652259_Observed_Vertical_Distribution_of_Tropospheric_Ozone/links/02e7e536d62fa7586f000000.pdf?inViewer=true&disableCoverPage=true&origin=publication_detail [24] Ziemke J, Chandra S, Duncan B, et al.Tropospheric ozone determined from Aura OMI and MLS:Evaluation of measurements and comparison with the Global Modeling Initiative's Chemical Transport Model.J Geophys Res, 2006, 111(D19), DOI: 10.1029/2006JD007089.1. [25] 李莹, 赵春生, 方圆圆, 等.利用卫星资料分析对流层臭氧柱总量分布特征及其可能的原因.应用气象学报, 2007, 18(2):181-186. doi: 10.11898/1001-7313.20070231 [26] 赵春生, 方圆圆, 汤洁, 等.MOPITT观测的CO分布规律及与瓦里关地面观测结果的比较.应用气象学报, 2007, 18(1):36-41. doi: 10.11898/1001-7313.20070107 [27] 白文广, 张鹏, 张兴赢, 等.用卫星资料分析中国区域CO柱总量时空分布特征.应用气象学报, 2010, 21(4):475-483. http://qikan.camscma.cn/jams/ch/reader/view_abstract.aspx?file_no=20100411&flag=1 [28] 唐孝炎, 张远航, 邵敏.大气环境化学(第二版).北京:高等教育出版社, 2006. [29] 马岚, 吴晓京, 江吉喜, 等.2001年夏季风活动与我国南方暴雨某些特征的分析.应用气象学报, 2001, 14(8):445-451. http://qikan.camscma.cn/jams/ch/reader/view_abstract.aspx?file_no=20030455&flag=1 [30] 陈隆勋, 张博, 张瑛.东亚季风研究的进展.应用气象学报, 2006, 17(6):711-724. doi: 10.11898/1001-7313.20060609 [31] 王启, 丁一汇, 江滢.亚洲季风活动及其与中国大陆降水关系.应用气象学报, 1998, 9(增刊Ⅰ):84-89. http://www.cnki.com.cn/Article/CJFDTOTAL-YYQX8S1.010.htm [32] 陆尔, 丁一汇.1991年江淮持续性特大暴雨的夏季风活动分析.应用气象学报, 1997, 8(3):316-324. http://qikan.camscma.cn/jams/ch/reader/view_abstract.aspx?file_no=19970345&flag=1 [33] 洪盛茂, 焦荔, 何曦, 等.杭州市区大气臭氧浓度变化及气象要素影响.应用气象学报, 2009, 20(5):602-611. doi: 10.11898/1001-7313.20090512 [34] Fishman J, Seiler W.Correlative nature of ozone and carbon monoxide in the troposphere:Implications for the tropospheric ozone budget.J Geophys Res, 1983, 88(C6):3662-3670. doi: 10.1029/JC088iC06p03662