留言板

尊敬的读者、作者、审稿人, 关于本刊的投稿、审稿、编辑和出版的任何问题, 您可以本页添加留言。我们将尽快给您答复。谢谢您的支持!

姓名
邮箱
手机号码
标题
留言内容
验证码

气溶胶散射相函数的单站观测研究

张霖逸 颜鹏 毛节泰 张骁 田平 畅海如

张霖逸, 颜鹏, 毛节泰, 等. 气溶胶散射相函数的单站观测研究. 应用气象学报, 2017, 28(4): 436-446. DOI: 10.11898/1001-7313.20170405..
引用本文: 张霖逸, 颜鹏, 毛节泰, 等. 气溶胶散射相函数的单站观测研究. 应用气象学报, 2017, 28(4): 436-446. DOI: 10.11898/1001-7313.20170405.
Zhang Linyi, Yan Peng, Mao Jietai, et al. Observational study on aerosol scattering phase function at Raoyang of Hebei, China. J Appl Meteor Sci, 2017, 28(4): 436-446. DOI:  10.11898/1001-7313.20170405.
Citation: Zhang Linyi, Yan Peng, Mao Jietai, et al. Observational study on aerosol scattering phase function at Raoyang of Hebei, China. J Appl Meteor Sci, 2017, 28(4): 436-446. DOI:  10.11898/1001-7313.20170405.

气溶胶散射相函数的单站观测研究

DOI: 10.11898/1001-7313.20170405
资助项目: 

科技部科技基础性工作专项 2013FY112500

国家自然科学基金重点项目 41330422

详细信息
    通信作者:

    颜鹏, email:yanpeng@camscma.cn

Observational Study on Aerosol Scattering Phase Function at Raoyang of Hebei, China

  • 摘要:

    利用2014年夏季在河北饶阳开展的“华北区域光化学立体试验”观测得到气溶胶辐射特性,根据三波长角散射浊度仪Aurora 4000测量获取的前向角散射系数(10°~90°)和后向散射系数,提出了一种基于浊度仪直接测量的气溶胶角散射系数和改进的HG相函数近似获取气溶胶散射相函数、不对称因子的拟合估算方法。分析了2014年6月16日—8月18日夏季观测试验期间河北饶阳地区大气气溶胶细粒子(PM2.5)在635 nm,525 nm,450 nm 3个波段的不对称因子、相函数等的变化特征。结果表明:用改进的HG相函数近似能够较好地拟合河北饶阳实际观测的PM2.5的气溶胶散射相函数。拟合得到河北饶阳地区观测期间干气溶胶细粒子在3个波段的平均不对称因子(g)分别为0.53±0.04(635 nm),0.57±0.05(525 nm)和0.57±0.07(450 nm)。

  • 图  1  λ=0.0(a),λ=0.6(b)时观测与拟合的525 nm后向散射比

    Fig. 1  Observation and fitting results of backscattering ratio at 525 nm as λ=0.0(a) and λ=0.6(b)

    图  2  λ=0.0和λ=0.6时525 nm相函数的拟合值与试验观测值的对比

    Fig. 2  Comparison of observed and fitted results as λ=0.0 and λ=0.6 at 525 nm

    图  3  2014年6月16日—8月18日的平均相函数(10°~90°)

    Fig. 3  Average phase function(10°-90°) from 16 Jun to 18 Aug in 2014

    图  4  2014年6月16日—8月18日的不对称因子g逐时分布

    Fig. 4  Time series of simulated asymmetry factor(g) from 16 Jun to 18 Aug in 2014

    图  5  2014年7—8月河北饶阳污染过程、清洁时段的相函数平均

    (a)635 nm,(b)525 nm,(c)450 nm

    表  1  不同λ下15°~20°的角散射系数和后向散射比回归系数

    Table  1  Regression coefficient for angularscattering at 15°-20° and backscattering ratio with different λ

    λA1A2
    00.9781.083
    0.10.9811.079
    0.20.9851.075
    0.30.9901.069
    0.40.9971.063
    0.51.0071.056
    0.61.0221.05
    0.71.0521.019
    0.81.0711.001
    0.91.0721
    11.0721
    注:回归公式PRHG=A1×P15°~20°, bRHG=A2×b,其中bRHGb分别为后向散射比的拟合值和观测值,表中的参数A1, A2分别为线性回归系数。
    下载: 导出CSV

    表  2  2014年6月16日—8月18日气溶胶不对称因子(g)的统计特征

    Table  2  Statistical property of asymmetry factor from 16 Jun to 18 Aug in 2014

    统计量g
    635 nm525 nm450 nm
    平均值0.530.570.57
    方差0.040.050.07
    最大值0.610.660.67
    最小值0.350.280.24
    中值0.530.580.59
    下载: 导出CSV

    表  3  中国饶阳地区不对称因子与其他地区的对比

    Table  3  The asymmetry factor(g) at Raoyang of China and other regions

    地区不对称因子波长/nm计算方法文献出处
    饶阳(中国,农村)0.57525本研究
    俄克拉荷马(美国,平原)0.55~0.63550MIE散射、直接测量文献[18]
    库亚巴(巴西,城市)0.54550MIE散射文献[39]
    合肥(中国,城市)0.75550经验公式文献[40]
    兰州(中国,城市)0.7520经验公式文献[41]
    维也纳(奥地利,城市)0.628532直接测量文献[42]
    京都(日本,城市)0.59532直接测量文献[15]
    注:经验公式是利用地面测量的散射、吸收系数,根据不对称因子(g)与单次散射反照率的经验公式计算;MIE散射是利用粒子谱计算得到的相函数与不对称因子(g);直接测量是利用多角度浊度仪测量角散射系数获得相函数和不对称因子(g)。
    下载: 导出CSV

    表  4  2014年7—8月饶阳污染过程、清洁时段不对称因子统计特征

    Table  4  The asymmetry factor(g) in dirty and clean periods from Jul to Aug in 2014

    过程时段g
    635 nm525 nm450 nm
    污染过程107-06—070.560.620.63
    污染过程207-31—08-020.580.620.63
    清洁时段107-09—100.530.540.54
    清洁时段208-04—060.510.540.54
    下载: 导出CSV
  • [1] Coakley J A, Cess R D, Yurevich F B.The effect of tropospheric aerosols on the earth's radiation budget:A parameterization for climate models.J Atmos Sci, 1982, 40(1):116-138. https://www.researchgate.net/publication/234382631_The_Effect_of_Tropospheric_Aerosols_on_the_Earth's_Radiation_Budget_A_Parameterization_for_Climate_Models
    [2] IPCC AR5.Clouds and Aerosols//Climate Change 2013:The Physical Science Basis.Contribution of Working Group Ⅰ to the Fifth Assessment Report of the Intergovernmental Panel on Climate Change, 2013.
    [3] Liu P, Zhao C, Zhang Q, et al.Aircraft study of aerosol vertical distributions over Beijing and their optical properties.Tellus B, 2009, 61(5):756-767. doi:  10.1111/j.1600-0889.2009.00440.x
    [4] 张养梅, 颜鹏, 杨东贞, 等.临安大气气溶胶理化特性季节变化.应用气象学报, 2007, 18(5):635-644. doi:  10.11898/1001-7313.20070519
    [5] 张玉香, 胡秀清, 刘玉洁, 等.北京地区大气气溶胶光学特性监测研究.应用气象学报, 2002, 13(1):136-143. http://www.cnki.com.cn/Article/CJFDTOTAL-YYQX2002S1014.htm
    [6] 杨东贞, 颜鹏, 徐祥德.北京风沙天气的气溶胶特征.应用气象学报, 2002, 13(1):185-194. http://www.cnki.com.cn/Article/CJFDTOTAL-YYQX2002S1020.htm
    [7] 安林昌, 孙俊英, 张养梅, 等.天津武清地区单颗粒黑碳气溶胶特征观测分析.应用气象学报, 2011, 22(5):577-583. doi:  10.11898/1001-7313.20110507
    [8] Yan P, Tang J, Huang J, et al.The measurement of aerosol optical properties at a rural site in Northern China.Atmos Chem Phys, 2008, 7(5):2229-2242. https://www.researchgate.net/publication/26638893_The_measurement_of_aerosol_optical_properties_at_a_rural_site_in_Northern_China
    [9] 颜鹏, 刘桂清, 周秀骥, 等.上甸子秋冬季雾霾期间气溶胶光学特性.应用气象学报, 2010, 21(3):257-265. doi:  10.11898/1001-7313.20100301
    [10] 毛节泰, 李成才.气溶胶辐射特性的观测研究.气象学报, 2005, 63(5):622-635. doi:  10.11676/qxxb2005.061
    [11] 毛节泰, 李成才.MODIS卫星遥感北京地区气溶胶光学厚度及与地面光度计遥感的对比.应用气象学报, 2002, 13(特刊Ⅰ):127-135. http://www.cnki.com.cn/Article/CJFDTOTAL-YYQX2002S1013.htm
    [12] 徐敬, 丁国安, 颜鹏, 等.北京地区PM2.5的成分特征及来源分析.应用气象学报, 2007, 18(5):645-654. doi:  10.11898/1001-7313.20070520
    [13] Bian Y, Zhao C, Xu W, et al.Development and validation of a CCD-laser aerosol detective system for measuring the ambient aerosol phase function.Atmos Meas Tech, 2017:1-14. https://www.researchgate.net/profile/Jiangchuan_Tao/citations?sorting=citationCount&page=1
    [14] Benzvi S Y, Connolly B M, Matthews J A J, et al.Measurement of the aerosol phase function at the Pierre Auger Observatory.Astropart Phys, 2007, 28(3):312-320. doi:  10.1016/j.astropartphys.2007.06.005
    [15] Horvath H, Kasahara M, Tohno S, et al.Angular scattering of the Gobi Desert aerosol and its influence on radiative forcing.J Aerosol Sci, 2006, 37(10):1287-1302. doi:  10.1016/j.jaerosci.2006.01.004
    [16] Mourant J R, Boyer J, Hielscher A H, et al.Influence of the scattering phase function on light transport measurements in turbid media performed with small source-detector separations.Opt Lett, 1996, 21(7):546-548. doi:  10.1364/OL.21.000546
    [17] Mccartney E J, Jr F F H.Optics of the Atmosphere:Scattering by Molecules and Particles:WILEY.1976.
    [18] Andrews E, Sheridan P J, Fiebig M, et al.Comparison of methods for deriving aerosol asymmetry parameter.J Geophys Res, 2006, 111(D5):D05S4. https://www.researchgate.net/publication/224798189_Comparison_of_methods_for_deriving_aerosol_asymmetry_parameter
    [19] Fiebig M, Stein C, Schröder F, et al.Inversion of data containing information on the aerosol particle size distribution using multiple instruments.J Aerosol Sci, 2005, 36(11):1353-1372. doi:  10.1016/j.jaerosci.2005.01.004
    [20] Grimm H, Eatough D J.Aerosol measurement:The use of optical light scattering for the determination of particulate size distribution, and particulate mass, including the semi-volatile fraction.J Air Waste Manage, 2009, 59(1):101-107. doi:  10.3155/1047-3289.59.1.101
    [21] Shen X J, Sun J Y, Zhang Y M, et al.First long-term study of particle number size distributions and new particle formation events of regional aerosol in the North China Plain.Atmos Chem Phys, 2011, 10(10):1565-1580. https://www.researchgate.net/publication/50828834_First_long-term_study_of_particle_number_size_distributions_and_new_particle_formation_events_of_regional_aerosol_in_the_North_China_Plain
    [22] 刘长盛, 刘文保.大气辐射学, 南京:南京大学出版社, 1990.
    [23] Henyey L G, Greenstein J L.Diffuse radiation in the galaxy.Astrophys J, 1940, 93(1):70-83. https://www.researchgate.net/publication/222859417_Diffuse_radiation_from_cosmic_ray_interactions_in_the_galaxy
    [24] Kattawar G W.A three-parameter analytic phase function for multiple scattering calculations.J Quant Spectrosc R A, 1975, 15(9):839-849. doi:  10.1016/0022-4073(75)90095-3
    [25] Cornette W M, Shanks J G.Physically reasonable analytic expression for the single-scattering phase function.Appl Optics, 1992, 31(16):3152-3160. doi:  10.1364/AO.31.003152
    [26] Nakajima T, Tanaka M, Yamauchi T.Retrieval of the optical properties of aerosols from aureole and extinction data.Appl Optics, 1983, 22(22):2951-2959. https://www.researchgate.net/publication/5651665_Retrieval_of_the_optical_properties_of_aerosols_from_aureole_and_extinction_data
    [27] 毛节泰, 栾胜基.大气散射相函数的计算.大气科学, 1985, 9(1):107-111. http://www.cnki.com.cn/Article/CJFDTOTAL-DQXK198501012.htm
    [28] Wiscombe W J, Grams G W.The backscattered fraction in two-stream approximations.J Atmos Sci, 1976, 33(12):2440-2451. doi:  10.1175/1520-0469(1976)033<2440:TBFITS>2.0.CO;2
    [29] Hänel G.Single scattering albedo, asymmetry parameter, apparent refractive index, and apparent soot content of dry atmospheric particles.Appl Optics, 1988, 27(11):2287-2295. doi:  10.1364/AO.27.002287
    [30] Ran L, Deng Z, Xu X, et al.Vertical profiles of black carbon measured by a micro-aethalometer in summer in the North China Plain.Atmos Chem Phys, 2016, 16(16):10441-10454. doi:  10.5194/acp-16-10441-2016
    [31] Wang R, Xu X, Jia S, et al.Lower tropospheric distributions of O3 and aerosol over Raoyang, a rural site in the North China Plain.Atmos Chem Phys, 2016:1-29. https://www.researchgate.net/publication/310822035_Lower_tropospheric_distributions_of_O3_and_aerosol_over_Raoyang_a_rural_site_in_the_North_China_Plain
    [32] Müller T, Nowak A, Wiedensohler A, et al.Angular illumination and truncation of three different integrating nephelometers:Implications for empirical, size-based corrections.Aerosol Sci Tech, 2009, 43(6):581-586. doi:  10.1080/02786820902798484
    [33] Fitzgerald J W.Angular truncation error of the integrating nephelometer in the fog droplet size range.J Appl Meteorol, 1977, 16(2):210-214. https://www.researchgate.net/publication/249605010_Angular_Truncation_Error_of_the_Integrating_Nephelometer_in_the_Fog_Droplet_Size_Range
    [34] Heintzenberg J, Wiedensohler A, Tuch T M, et al.Intercomparisons and aerosol calibrations of 12 commercial integrating nephelometers of three manufacturers.J Atmos Ocean Tech, 2005, 23(7):902-914. https://www.researchgate.net/profile/Alfred_Wiedensohler/publication/252265693_Intercomparisons_and_Aerosol_Calibrations_of_12_Commercial_Integrating_Nephelometers_of_Three_Manufacturers/links/56864f3e08ae197583972397.pdf?inViewer=0&pdfJsDownload=0&origin=publication_detail
    [35] 马楠, 周秀骥, 颜鹏, 等.一种改进的TSI3563积分浊度误差校正方法.应用气象学报, 2015, 26(1):12-21. doi:  10.11898/1001-7313.20150102
    [36] Anderson T L, Ogren J A.Determining aerosol radiative properties using the TSI 3563 integrating nephelometer.Aerosol Sci Tech, 1998, 29(1):57-69. doi:  10.1080/02786829808965551
    [37] Müller T, Laborde M, Kassell G, et al.Design and performance of a three-wavelength LED-based total scatter and backscatter integrating nephelometer.Atmos Meas Tech, 2010, 4(6):4835-4864. http://www.oalib.com/paper/2708453
    [38] Fiebig M, Ogren J A.Retrieval and climatology of the aerosol asymmetry parameter in the NOAA aerosol monitoring network.J Geophys Res, 2006, 111:D21204. doi:  10.1029/2005JD006545
    [39] Ross J L, Hobbs P V, Holben B.Radiative characteristics of regional hazes dominated by smoke from biomass burning in Brazil:Closure tests and direct radiative forcing.J Geophys Res, 1998, 103(D24):31925-31941. doi:  10.1029/97JD03677
    [40] 韩永, 饶瑞中, 王英俭. 利用积分浊度计获取合肥地区大气气溶胶光学特性. 长江三角洲气候与环境研讨会, 2007.
    [41] 胡波, 张婕, 张武, 等.应用积分浑浊度仪研究兰州城市冬季大气气溶胶.兰州大学学报(自然科学版), 2005, 41(3):19-25. http://www.cnki.com.cn/Article/CJFDTOTAL-LDZK200503005.htm
    [42] Horvath H, Kasahara M, Tohno S, et al.Relationship between fraction of backscattered light and asymmetry parameter.J Aerosol Sci, 2015, 91(3):43-53. http://adsabs.harvard.edu/abs/2015EGUGA..1715490H
  • 加载中
图(5) / 表(4)
计量
  • 摘要浏览量:  3878
  • HTML全文浏览量:  1197
  • PDF下载量:  552
  • 被引次数: 0
出版历程
  • 收稿日期:  2017-04-01
  • 修回日期:  2017-05-19
  • 刊出日期:  2017-07-31

目录

    /

    返回文章
    返回