Contrastive Analysis of Lightning Characteristics Between Rainstorm Case and Hailstorm Case
-
摘要: 暴雨与雹暴过程中对应的闪电活动特征显著不同,为了对比这两类对流过程中的闪电活动特征差异,该文选取了两种比较有代表性的雷暴个例——暴雨过程和雹暴过程,利用全闪(包括云闪与地闪)定位数据,分析了两者闪电活动特征以及闪电活动与对流降水之间的关系。研究发现:暴雨过程中地闪频次和正地闪比例均低于雹暴过程;相对于暴雨过程,雹暴过程的主正电荷区放电高度更高,主正电荷区所处的温度偏低;暴雨过程中,总闪频次与对流降水量、总闪频次与对流降水强度的相关性均优于雹暴过程。总体而言,雹暴过程中闪电活动特征及其与降水的关系更为复杂,这可能与雹暴过程具有更为复杂的动力和冰相过程有关。Abstract: Two kinds of classic convective systems in and around Beijing are picked to investigate the lightning activities (observed by SAFIR3000) and the relationship between lightning and precipitation (retrieved from radar) during different thunderstorms. Lightning activity characteristics of a rainstorm and a hailstorm are analyzed and compared. Due to different microphysics and dynamic processes, there are significant differences in the discharge process within clouds, resulting in significant differences in corresponding lightning activities. The hailstorm has larger ratio of CG (cloud-to-ground) lightning, and the ratio of positive CG lightning is 0.311, comparing to 0.191 of the rainstorm.During the rainstorm, the intensity of convective precipitation is decreasing sharply when the lightning frequency reaches the highest value. The lightning frequency in this region can provide about 5-15 min warning time for the maximum rainfall intensity. In the early stage of hailstorm, rainstorm with short duration occurs, and the frequency of lightning reaches the peak when the hailstorm occurs, and then it declines as the hailstorm maintains. The hailstorm has larger ratio of CG lightning than the rainstorm. The main discharge area in hailstorm is higher than that in rainstorm, the temperature layer corresponded to the main charge region in hailstorm is lower than that in rainstorm. The total lightning frequency between convective precipitation's linear correlation coefficient is better in rainstorm than that in hailstorm.The linear correlation between lightning and precipitation in hailstorm is more complicated, because hailstorm has more complex dynamic and ice phase microphysics. These quantificational results can provide reference for applications of lightning data in severe weather warning and precipitation estimation.However, it's not certain whether all hailstorms have the similar lightning and precipitation relationships (the highest precipitation in the early stage of the hailstorms, and the total flash to reach the maximum in the hail stage). These results can be improved through further analysis when there are more observation cases.
-
Key words:
- lightning;
- precipitation;
- rainstorm;
- hailstorm
-
表 1 影响半径的计算方式
Table 1 The calculation of the influence radius
影响半径/km 平均背景回波强度 1 Zbg < 25 dBZ 2 25 dBZ≤Zbg < 30 dBZ 3 30 dBZ≤Zbg < 35 dBZ 4 35 dBZ≤Zbg < 40 dBZ 5 Zbg≥40 dBZ 表 2 总闪频次的数值分布
Table 2 The numerical distribution of total flash frequency
项目 总闪频次 暴雨个例 雹暴个例 体扫数 55 40 最小值 34 2 最大值 847 7209 算术平均值 346 1270 中值 317 837 数据累积5%处的值 66 56 数据累积95%处的值 770 3372 数据累积25%处的值 235 295 数据累积75%处的值 438 1777 表 3 2006年7月24日暴雨个例中地闪频次的数值分布
Table 3 The numerical distribution of cloud-to-ground flash frequency during rainstorm on 24 Jul 2006
暴雨个例 地闪频次 正地闪频次 正地闪比例 地闪占总闪的比例 最小值 1 0 0 0.014 最大值 49 13 0.75 0.105 算术平均值 17 3 0.191 0.052 中值 14 3 0.163 0.049 数据累积5%处的值 3 0 0 0.020 数据累积95%处的值 39 8 0.5 0.098 数据累积25%处的值 7 1 0.094 0.034 数据累积75%处的值 25 4 0.265 0.068 表 4 2007年7月7日雹暴个例中地闪频次的数值分布
Table 4 The numerical distribution of cloud-to-ground flash frequency during hailstorm on 7 Jul 2007
雹暴个例 地闪频次 正地闪频次 正地闪比例 地闪占总闪的比例 最小值 2 1 0.145 0.004 最大值 253 57 0.600 0.737 算术平均值 67 19 0.311 0.117 中值 55 21 0.286 0.079 数据累积5%处的值 5 2 0.176 0.006 数据累积95%处的值 138 36 0.523 0.394 数据累积25%处的值 29 10 0.232 0.028 数据累积75%处的值 92 25 0.357 0.124 -
[1] Price C, Federmesser B.Lightning-rainfall relationships in Mediterranean winter thunderstorms.Geophys Res Lett, 2006, 33(7):L07813. http://adsabs.harvard.edu/abs/2006GeoRL..33.7813P [2] Chang D E, Weinman J A, Morales C A, et al.The effect of spaceborne microwave and ground-based continuous lightning measurements on forecasts of the 1998 Groundhog Day storm.Mon Wea Rev, 2001, 129(8):1809-1833. doi: 10.1175/1520-0493(2001)129<1809:TEOSMA>2.0.CO;2 [3] Schultz C J, Petersen W A, Carey L D.Lightning and severe weather:A comparison between total and cloud-to-ground lightning trends.Wea Forecasting, 2011, 26(5):744-755. doi: 10.1175/WAF-D-10-05026.1 [4] Reap R M, MacGorman D M.Cloud-to-ground lightning:Climatological characteristics and relationships to model fields, radar observations and severe local storms.Mon Wea Rev, 1989, 117:518-535. doi: 10.1175/1520-0493(1989)117<0518:CTGLCC>2.0.CO;2 [5] Rakov V A, Uman M A.The Lightning Physics and Effects.New York:Cambridge University Press, 2003:24-52. [6] MacGorman D R, Burgess D W.Positive cloud-to-ground lightning in tornadic storms and hailstorms.Mon Wea Rev, 1994, 122:1671-1697. doi: 10.1175/1520-0493(1994)122<1671:PCTGLI>2.0.CO;2 [7] 冯桂力, 郄秀书, 袁铁, 等.雹暴的闪电活动特征与降水结构研究.中国科学(地球科学), 2007, 37(1):123-132. http://www.cnki.com.cn/Article/CJFDTOTAL-JDXK200701013.htm [8] Rison W, Thomas R J, Krehbiel P R, et al.AGPS-based three dimensional lightning mapping system:Initial observations in central New Mexico.Geophys Res Lett, 1999, 26:3573-3576. doi: 10.1029/1999GL010856 [9] Thomsa R J, Krehbiel P R, Rison W, et al.Observation of VHF source powers radiated by lightning.Geophys Res Lett, 2001, 28:143-146. doi: 10.1029/2000GL011464 [10] 李亚珺, 张广庶, 文军, 等.沿海地区一次多单体雷暴电荷结构时空演变.地球物理学报, 2012, 55(10):3203-3212. doi: 10.6038/j.issn.0001-5733.2012.10.003 [11] Gallin L J, Farges T, Marchiano R, et al.Statistical analysis of storm electrical discharges reconstituted from a lightning mapping system, a lightning location system, and an acoustic array.Journal of Geophysical Research:Atmospheres, 2016, 121(8):3929-3953. doi: 10.1002/2015JD023745 [12] Seity Y, Soula S, Tabary P, et al.The convective storm systemduring IOP 2a of MAP:Cloud-to-ground lightning flash production in relation to dynamics and microphysics.Q J R Meteorol Soc, 2003, 129:523-542. doi: 10.1256/qj.02.03 [13] Branick M L, Doswell Ⅲ C A.An observation of the relationship between supercell structure and lightning ground strike polarity.Wea Forecasting, 1992, 7:143-149. doi: 10.1175/1520-0434(1992)007<0143:AOOTRB>2.0.CO;2 [14] Rakov V A, Uman M A.Lightning Physics and Effects.New York:Cambridge University Press, 2003, 1:81-82. [15] Petersen W A, Rutledge S A.On the relationship between cloud-to-ground lightning and convective rainfall.J Geophys Res, 1998, 103(D12):14025-14040. doi: 10.1029/97JD02064 [16] 郑栋, 但建茹, 张义军, 等.我国地闪活动和降水关系的区域差异.热带气象学报, 2012, 28(4):569-576. http://www.cnki.com.cn/Article/CJFDTOTAL-RDQX201204017.htm [17] 王婷波, 郑栋, 张义军, 等.基于大气层结和雷暴演变的闪电和降水关系.应用气象学报, 2014, 25(1):33-41. doi: 10.11898/1001-7313.20140104 [18] 王艳, 郑栋, 张义军.2000-2007年登陆台风中闪电活动与降水特征.应用气象学报, 2011, 22(3):321-328. doi: 10.11898/1001-7313.20110308 [19] Webb J D, Blackshaw J K.Notable Scottish thunderstorms in summer 2011.Weather, 2012, 67(8):199-203. doi: 10.1002/wea.v67.8 [20] Xu Shuang, Zheng Dong, et al.Characteristics of the two active stages of lightning activity in two hailstorms.J Meteor Res, 2016, 30:265-281. doi: 10.1007/s13351-016-5074-6 [21] 郑栋, 张义军, 孟青, 等.北京地区雷暴过程闪电与地面降水的相关关系.应用气象学报, 2010, 21(3):287-297. doi: 10.11898/1001-7313.20100304 [22] Lang T J, Lyons W A, Cummer S A, et al.Observations of two sprite-producing storms in Colorado.J Geophys Res, 2016, 121, DOI: 10.1002/2016JD025299. [23] 葛润生, 姜海燕, 彭红.北京地区雹暴气流结构的研究.应用气象学报, 1998, 9(1):1-7. http://qikan.camscma.cn/jams/ch/reader/view_abstract.aspx?file_no=19980101&flag=1 [24] 周志敏, 郭学良, 崔春光, 等.强风暴个例电荷结构及云闪放电差异的数值模拟.高原气象, 2012, 31(3):427. http://www.cnki.com.cn/Article/CJFDTOTAL-GYQX201203025.htm [25] Soula S, Seity Y, Feral L, et al.Cloud-to-ground lightning activity in hail-bearing storms.Journal of Geophysical Research:Atmospheres, 2004, 109(D2), DOI: 10.1029/2003JD003669. [26] Schultz C J, Petersen W A, Carey L D.Preliminary development and evaluation of lightning jump algorithms for the real-time detection of severe weather.Journal of Applied Meteorology and Climatology, 2009, 48(12):2543-2563. doi: 10.1175/2009JAMC2237.1 [27] Nishihashi M, Arai K, Fujiwara C, et al.Characteristics of lightning jumps associated with a tornadic supercell on 2 September 2013.SOLA, 2015, 11(0):18-22. doi: 10.2151/sola.2015-005 [28] Takahashi T, Tajiri T, Sonoi Y.Charges on Graupel and snow crystals and the electrical structure of winter thunderstorms.J Atmos Sci, 1999, 56:1561-1578. doi: 10.1175/1520-0469(1999)056<1561:COGASC>2.0.CO;2 [29] Ziper E J.Deep cumulonimbus cloud systems in the tropics with and without lightning.Mon Wea Rev, 1994, 122:1837-1851. doi: 10.1175/1520-0493(1994)122<1837:DCCSIT>2.0.CO;2 [30] 张义军, 徐良韬, 郑栋, 等.强风暴中反极性电荷结构研究进展.应用气象学报, 2014, 25(5):513-526. doi: 10.11898/1001-7313.20140501 [31] 蒙伟光, 易燕明, 杨兆礼, 等.广州地区雷暴过程云-地闪特征及其环境条件.应用气象学报, 2008, 19(5):611-619. doi: 10.11898/1001-7313.20080513 [32] 张腾飞, 尹丽云, 张杰, 等.云南两次中尺度对流雷暴系统演变和地闪特征.应用气象学报, 2013, 24(2):207-218. doi: 10.11898/1001-7313.20130209 [33] 周康辉, 郑永光, 蓝渝.基于闪电数据的雷暴识别、追踪与外推方法.应用气象学报, 2016, 27(2):173-181. doi: 10.11898/1001-7313.20160205 [34] Pineda N, Rigo T, Bech J, et al.Lightning and precipitation relationship in summer thunderstorms:Case studies in the North Western Mediterranea region.Atmos Res, 2007, 85:159-170. doi: 10.1016/j.atmosres.2006.12.004 [35] 吴量, 冯桂力, 杨仲江, 等.雷达资料在雷电临近预警中的应用研究.成都信息工程学院学报, 2011, 26(6):672-673. http://www.cnki.com.cn/Article/CJFDTOTAL-CDQX201106014.htm [36] Steiner M, Houze R A, Yuter S E.Climatological characterization of three-dimensional storm structure from operational radar and rain gauge data.J Appl Meteor, 1995, 34:1978-2007. doi: 10.1175/1520-0450(1995)034<1978:CCOTDS>2.0.CO;2 [37] 周筠君, 郄秀书, 张义军, 等.地闪与对流性天气系统中降水关系的分析.气象学报, 1999, 7(1):103-111. doi: 10.11676/qxxb1999.009