Impact of Wind Profiler Data on Regional Model Prediction in South China
-
摘要: 设计基于GRAPES_Meso的不同试验模拟2014年3月28日-4月8日的广东前汛期降水过程,评估风廓线资料对同化和预报的影响。对资料同化后分析增量的分析表明:相比同化时仅使用自动气象站资料,风廓线雷达资料对1000 hPa到850 hPa纬向风增量均有贡献,在850 hPa,700 hPa高度以上贡献迅速减小。应用3个试验的预报结果计算探空站、风廓线雷达站预报值与观测值的11 d均方根误差发现,同化加入风廓线雷达资料对各预报要素的改善在850 hPa高度最明显,其中风速预报误差显著降低,为0.7 m·s-1。此外,风廓线雷达资料对700 hPa风速预报有一定改善,而在925 hPa高度模拟效果反而降低。通过对2014年3月30日12:00(世界时)的个例分析发现,同化加入风廓线雷达资料的风速预报均方根误差在大雨级别以上的降水落区更大,其原因还有待于进一步研究。Abstract: Weather analysis demonstrates that upper-level jet, low-level jet, and wind shear are closely related with rainstorms and severe convections in South China. Wind profiler radar can continuously observe wind, making it the most direct resource of upper wind observation comparing with conventional observations. A network of observation stations with 18 wind profiler radars is built in Guangdong, data of which are assimilated every 3 hours in GRAPES_Meso model in real time, and the influence of wind profiler data is evaluated. A precipitation process in the pre-flood season of South China from 28 March to 9 April in 2014 is simulated through three designed experiments by GRAPES_Meso model. Results of assimilation trials show that wind profile data contribute a lot to analysis increment of zonal wind at levels from 1000 hPa to 850 hPa, especially at 850 hPa, and this effect rapidly diminishes above 700 hPa level. The root mean square error (RMSE) of forecasted variables at radiosonde stations are calculated in terms of sounding observations and the outcome of three experiments. Results show that profiler data mostly improve RMSE at 850 hPa, which announces a 0.7 m·s-1 reduce of forecasted wind speed error, for 700 hPa level there's no evident improvement, and for 925 hPa level it becomes even worse. The same RMSE analysis is done at 12 wind profiler stations. The result is in accordance with radiosonde stations, which shows that the RMSE decreases at 850 hPa as well and the improvement is not evident at 925 hPa. The analysis indicates that the quality of wind profiler data is relatively better at 850 hPa. Results of two sensitive experiments for 1200 UTC 30 March 2014 is examined, revealing that the RMSE of the forecasted wind speed is even greater when wind profiler data are used in assimilation at locations of heavy rain grade or above. Besides, it seems that the RMSE of the forecasted wind speed also increases in the downstream direction of this heavy rain location. Causes of these two phenomena still need to be analyzed.
-
Key words:
- wind profiler;
- data assimilation;
- regional model in South China
-
图 5 2014年3月29日—4月8日敏感性试验1与敏感性试验2模拟探空站预报要素均方根误差的差值随高度分布
(a)风速(ΔV),(b)温度(ΔT),(c)位势高度(ΔH)
Fig. 5 Difference between sensitive experiment 1 and sensitive experiment 2 for the forecast root mean square error between observation and forecast at mandatory pressure levels from 29 Mar to 8 Apr in 2014 for radiosonde stations
(a)wind speed (ΔV), (b)temperature (ΔT), (c)potential height (ΔH)
表 1 2014年3月30日12:00 850 hPa高度风廓线雷达站风速预报误差
Table 1 850 hPa wind speed forecast error at 1200 UTC 30 Mar 2014 for profiler stations
站名 敏感性试验1风速均方根误差/(m·s-1) 敏感性试验2风速均方根误差/(m·s-1) 同化本站风廓线雷达资料层数 潮州 4.40 0.94 9 连州 2.20 1.21 9 五华 8.02 7.09 10 新会 19.53 18.08 10 珠海 9.29 6.90 6 阳江 4.59 0.56 0 南雄 0.45 2.33 0 龙门 3.84 6.73 10 从化 6.03 7.12 10 增城 8.28 8.99 7 南沙 14.72 15.74 0 罗定 7.07 9.09 0 -
[1] 何立富, 周庆亮, 陈涛."05.6"华南暴雨中低纬度系统活动及相互作用.应用气象学报, 2010, 21(4):385-394. doi: 10.11898/1001-7313.20100401 [2] 陈元昭, 俞小鼎, 陈训来, 等.2015年5月华南一次龙卷过程观测分析.应用气象学报, 2015, 26(5):45-56. http://qikan.camscma.cn/jams/ch/reader/view_abstract.aspx?file_no=20160308&flag=1 [3] Kuo Y H, Donall E G, Shapiro M A.Feasibility of short-range numerical weather prediction using observations from a network profilers.Mon Wea Rev, 1987, 115:2402-2427. doi: 10.1175/1520-0493(1987)115<2402:FOSRNW>2.0.CO;2 [4] Cram J M, Kaplan M L, Mattocks C A, et al.The use and analysis of profiler winds to derive mesoscale height and temperature fields:Simulation and real-data experiment.Mon Wea Rev, 1991, 119:1040-1056. doi: 10.1175/1520-0493(1991)119<1040:TUAAOP>2.0.CO;2 [5] 王欣, 卞林根, 彭浩, 等.风廓线仪系统探测试验与应用.应用气象学报, 2005, 6(5):63-68. http://qikan.camscma.cn/jams/ch/reader/view_abstract.aspx?file_no=20050590&flag=1 [6] Smith T L, Benjamin S G.Impact of network wind profiler data on a 3-h data assimilation system.Bull Amer Meteor Soc, 1993, 74(5):801-807. doi: 10.1175/1520-0477(1993)074<0801:IONWPD>2.0.CO;2 [7] Spencer P L, Janish P R, Doswell C A.A four-dimensional objective analysis scheme and multitriangle technique for wind profiler data.Mon Wea Rev, 1999, 127:279-291. doi: 10.1175/1520-0493(1999)127<0279:AFDOAS>2.0.CO;2 [8] Nielsen-Gammon J W, Mcnider R T, Angevine W M, et al.Mesoscale model performance with assimilation of wind profiler data:Sensitivity to assimilation parameters and network configuration.J Geophys Res, 2007, 112:185-194. doi: 10.1029/2006JD007633/full [9] Zhang L, Pu Z.Four-dimensional assimilation of multitime wind profiles over a single station and numerical simulation of a mesoscale convective system observed during IHOP_2002.Mon Wea Rev, 2011, 139:3369-3388. doi: 10.1175/2011MWR3569.1 [10] 张旭斌, 万齐林, 薛纪善, 等.风廓线雷达资料质量控制及其同化应用.气象学报, 2015, 73(1):159-176. doi: 10.11676/qxxb2015.015 [11] 谭晓伟, 徐枝芳, 龚建东.风廓线雷达资料对GRAPES_MESO数值预报系统影响的初步研究.气象, 2016, 42(l):26-33. http://www.cnki.com.cn/Article/CJFDTOTAL-QXXX201601003.htm [12] 张胜军, 徐祥德, 吴庆梅, 等."中国登陆台风外场科学试验"风廓线仪探测资料在四维同化中的初步应用研究.应用气象学报, 2004, 15(增刊Ⅰ):101-109. http://www.cnki.com.cn/Article/CJFDTOTAL-YYQX2004S1014.htm [13] 周芯玉, 廖菲.利用中位数方法对风廓线雷达数据质量控制的研究.热带气象学报, 2015, 31(6):804-810. http://www.cnki.com.cn/Article/CJFDTOTAL-RDQX201506008.htm [14] 陈浩君, 黄兴友, 孙婧, 等.基于径向功率谱的风廓线雷达错误风数据处理.应用气象学报, 2015, 26(4):460-471. doi: 10.11898/1001-7313.20150408 [15] 高祝宇, 阮征, 魏鸣, 等.风廓线雷达数据质量影响因子及处理算法.应用气象学报, 2016, 27(2):148-159. doi: 10.11898/1001-7313.20160203 [16] 邓闯, 阮征, 魏鸣, 等.风廓线雷达测风精度评估.应用气象学报, 2012, 23(5):523-533. doi: 10.11898/1001-7313.20120502 [17] Wan Q L, Xue J X, Zhuang S Y.Study on the variational assimilation technique for the retrieval of wind fields from Doppler radar data.Acta Meteorologica Sinica, 2006, 20(1):1-19. http://kns.cnki.net/KCMS/detail/detail.aspx?filename=qxxw200601001&dbname=CJFD&dbcode=CJFQ [18] Ding W Y, Wan Q L, Zhang C Z, et al.MODIS brightness temperature data assimilation under cloudy conditions Ⅰ:Methods and ideal tests.J Trop Meteor, 2010, 16(4):313-324. http://www.cnki.com.cn/Article/CJFDTOTAL-RQXB201004002.htm [19] Huang Y Y, Xue J S, Wan Q L, et al.Improvement of the surface pressure operator in GRAPES and its application in precipitation forecasting in South China.Adv Atmos Sci, 2013, 30(2):466-467. doi: 10.1007/s00376-012-1270-1 [20] 高郁东, 万齐林, 何金海.三维变分同化雷达视风速的改进方案及其数值试验.气象学报, 2011, 69(4):631-643. doi: 10.11676/qxxb2011.055 [21] 高郁东, 万齐林, 薛纪善, 等.同化雷达估算降水率对暴雨预报的影响.应用气象学报, 2015, 26(5):45-56. http://qikan.camscma.cn/jams/ch/reader/view_abstract.aspx?file_no=20150105&flag=1