Design and Implementation of Intelligent Grid Forecasting Platform Based on MICAPS4
-
摘要: 随着我国智能网格预报业务的开展,海量高分辨率客观数据需要便捷的分析显示及产品制作平台高效处理。该文基于MICAPS4(Meteorological Information Comprehensive Analysis and Processing System Version 4.0,人机交互气象信息处理和天气预报制作系统)设计并实现智能网格预报平台,采用MVVM(模型-视图-视图模型,model-view-viewmodel)设计模式,实现业务逻辑与视图的分离,通过对各子功能模块的划分,降低模块之间的耦合度,具有良好的可扩展性。平台实现了高分辨率网格预报数据的显示分析和产品输出,开发了基于等值线、网格、关键点等智能化预报制作工具,集成了降水时间拆分、温度极值订正等客观预报方法,开发了降水、温度、相对湿度等要素一致性处理方法,可有效帮助预报员提高工作效率,同时能够确保产品之间的一致性。平台继承MICAPS4的微内核组件服务、高性能渲染引擎和开放式插件扩展管理等优良特性,实现面向智能网格预报的业务编排、智能编辑和算法集成。目前,该平台已经实现业务应用,为全国智能网格预报业务提供重要支撑。Abstract: With the rapid development of modern weather prediction in China, large amounts of high-resolution data are widely used. An efficient and convenient platform for data displaying, analyzing and forecasting is urgently needed. In response to the requirement of business, an intelligent grid forecasting platform is designed and implemented based on MICAPS4 (Meteorological Information Comprehensive Analysis Processing System Version 4), which is used by the provincial meteorological departments to produce and distribute meteorological grid forecasting products. The application background, requirement analysis, framework design and main functions implementation are discussed in details. In addition, some key technologies involved in the platform realization are also described.The MVVM (model-view-viewmodel) design mode is adopted in the platform to separate the business logic from the view. And the coupling degree between modules is reduced by dividing each sub-function module, which has good scalability. The supporting data environment of the platform mainly includes meteorological service network/Internet, CIMISS (China Integrated Meteorological Information Service System), as well as other local data sources. The display and analysis program of high-resolution grid forecast data is realized, which includes 17 weather elements such as precipitation, temperature, wind, relative humidity, cloud cover and disastrous weather. And several intelligent forecasting tools based on contours, grids and key points are developed, which integrates objective forecast methods such as the precipitation time consistency algorithm and the correction of timing temperature using 24 h high and low temperature extreme value. Some element consistency algorithms are developed, such as precipitation, temperature, humidity and so on, which helps forecasters to improve work efficiency and ensure consistency among products. A graphical configuration management interface is provided, which facilitates user localization application.Since July 2016, the platform has been put into operation in most of the provincial meteorological departments in China, which provides an important support for the national intelligent grid forecasting business. Ever since, the platform is further improved by adding new functions and fixing bugs based on user feedbacks.In the future, intelligent multi-source objective prediction products recommending module will be developed, which is based on machine learning, inspection and evaluation and other technical methods. An intelligent collaborative engine of elements will be designed and realized in order to achieve more diverse forecast products. And some of the classic objective methods in weather forecasting will be integrated into the platform. On this basis, the visual modeling tool will be developed, which provides a graphical modeling approach to model forecasting experience, so that experience and intelligent methods of forecasters can achieve a better combination.
-
Key words:
- intelligent grid forecast;
- grid editing;
- element consistency;
- MICAPS4
-
表 1 天气现象优先级
Table 1 Weather phenomenon priority
天气现象 优先级 特大暴雨 1 暴雪 2 大暴雨 3 暴雨 4 雷阵雨并伴有冰雹 5 大雪 6 中雪 7 大雨 8 小雪 9 中雨 10 冻雨 11 雷阵雨 12 雨夹雪 13 小雨 14 强沙尘暴 15 沙尘暴 16 雾 17 霾 18 扬沙或浮尘 19 晴、阴、多云 20 -
[1] 程正泉, 廖代强.数值天气预报模式产品在预报业务中的应用.广东气象, 2012, 34(4):1-9. https://www.cnki.com.cn/qikan-DZRU201324167.html [2] 邓国, 龚建东, 邓莲堂, 等.国家级区域集合预报系统研发和性能检验.应用气象学报, 2010, 21(5):513-523. doi: 10.11898/1001-7313.20100501 [3] 郑永光, 周康辉, 盛杰, 等.强对流天气监测预报预警技术进展.应用气象学报, 2015, 26(6):641-657. doi: 10.11898/1001-7313.20150601 [4] Bally J.The Thunderstorm Interactive Forecast System:Turning automated thunderstorm tracks into severe weather warnings.Wea Forecasting, 2010, 19(1):64-72. https://www.researchgate.net/publication/249612656_The_Thunderstorm_Interactive_Forecast_System_Turning_Automated_Thunderstorm_Tracks_into_Severe_Weather_Warnings [5] 康志明, 鲍媛媛, 周宁芳.我国中期和延伸期预报业务现状以及发展趋势.气象科技进展, 2013, 3(1):18-24. http://d.old.wanfangdata.com.cn/Periodical/qxkjjz201301011 [6] 毕宝贵, 代刊, 王毅, 等.定量降水预报技术进展.应用气象学报, 2016, 27(5):534-549. doi: 10.11898/1001-7313.20160503 [7] 高嵩, 毕宝贵, 李月安, 等.MICAPS4预报业务系统建设进展与未来发展.应用气象学报, 2017, 28(5):513-531. doi: 10.11898/1001-7313.20170501 [8] 高嵩, 代刊, 薛峰.基于MICAPS3.2平台的格点编辑平台设计与开发.气象, 2014, 40(9):1152-1158. doi: 10.7519/j.issn.1000-0526.2014.09.013 [9] 王若曈, 黄向东, 张博, 等.海量气象数据实时解析与存储系统的设计与实现.算机工程与科学, 2015, 37(11):2045-2054. doi: 10.3969/j.issn.1007-130X.2015.11.009 [10] Hansen T, Mathewson B M, LeFebvre T J, et al. Forecast Methodology Using the GFE Suite. 17th International Conference on Interactive Information and Processing Systems (ⅡPS) for Meteorology, 2001. [11] 王海宾, 杨引明, 漆梁波, 等.澳大利亚气象局图形预报编辑器(GFE)介绍和分析.大气科学研究与应用, 2012(1):109-116. http://mall.cnki.net/magazine/Article/DQTY201201017.htm [12] 王海宾, 杨引名, 范旭亮, 等.上海精细化格点预报业务进展与思考.气象科技进展, 2016, 6(4):18-23. http://www.docin.com/p-1770308124.html [13] 张利平, 夏军.短期定量降水预报研究进展.武汉大学学报(工学版), 2000, 33(1):63-67. http://www.doc88.com/p-6728193047388.html [14] 沈学顺, 苏勇, 胡江林, 等.GRAPES_GFS全球中期预报系统的研发和业务化.应用气象学报, 2017, 28(1):1-10. doi: 10.11898/1001-7313.20170101 [15] 吴启树, 韩美, 刘铭, 等.基于评分最优化的模式降水预报订正算法对比.应用气象学报, 2017, 28(3):306-317. doi: 10.11898/1001-7313.20170305 [16] 吴启树, 韩美, 郭弘, 等.MOS温度预报中最优训练期方案.应用气象学报, 2016, 27(4):426-434. doi: 10.11898/1001-7313.20160405 [17] 王海军, 刘莹.综合一致性质量控制方法及其在气温中的应用.应用气象学报, 2012, 23(1):69-76. http://qikan.camscma.cn/jams/ch/reader/view_abstract.aspx?file_no=20120108&flag=1