Main Influencing Factors of Visibility in Beijing
-
摘要: 利用北京市道面自动气象站、国家级自动气象站等多种观测数据分析北京地区2007—2015年能见度及其主要影响因子, 并挑选两次典型低能见度事件过程进行详细分析。从空间分布看, 北京西北地区能见度明显高于中心城区和东南大部地区。从时间分布看, 北京地区平均能见度最大值出现在5月, 最小值出现在7月; 日间的最低值多出现在06:00(北京时, 下同)左右, 冬季略向后推迟; 最高值多出现在16:00前后, 冬季略有提前。整体而言, 2007—2015年北京地区发生低能见度事件的概率为62.14%, 且发生低能见度的事件集中于1~5 km, 霾事件中干霾、湿霾的发生频率分别为86.13%和13.87%。能见度的主要影响因子为相对湿度、风速和PM2.5浓度。其中, 能见度与风速呈正相关, 与相对湿度和PM2.5浓度呈反相关。需要指出的是, 当相对湿度增加至80%, 能见度受PM2.5浓度的影响程度在下降, 而主要受相对湿度的影响。基于所选个例, 当北京地区出现湿霾事件时, 能见度的恶化程度远高于干霾事件, 且PM2.5浓度需比干霾事件时下降得更低才能有效改善能见度。Abstract: People's work, life and travel could be affected by the air visibility especially low visibility which has harmful effects on society and traffic safety.In recent years, the cause and variation of visibility become a very important topic in the field of atmosphere and environment research.In light of this, an analysis is carried out on the visibility in Beijing using all available observations.And two typical low visibility events are picked out to analyze in detail.As for Beijing, the most relevant elements of visibility are relative humidity, wind speed and PM2.5 concentration.PM2.5 concentration reduces visibility by extinction for light.Water vapor in the air causes the atmospheric aerosol particles increasing through moisture absorption and changes its characteristics, which brings down the visibility.And when the wind velocity is low, with poor air pollutant diffusion conditions and accumulating particles, the visibility decreases obviously.So it could be concluded that atmospheric visibility depends on both meteorological conditions and air pollution, which differs in different areas because of geographical locations, climatic conditions, and the composition of particulate matter.In brief, the correlation between visibility and wind speed is positive, which means that visibility increases with the increase of wind speed.And correlations among visibility, PM2.5 concentration and relative humidity are both negative, which means that visibility decreases with the increase of relative humidity and PM2.5 concentration.But it is important to point out that once relative humidity reaches a certain threshold (80%), the correlation between visibility and PM2.5 concentration declines, which results in the visibility mainly depending on relative humidity.Generally, the periodic variation of visibility is more consistent with the change of meteorological conditions, and the relationship between visibility and PM2.5 concentration is more complicated.In recent years, the result shows that the visibility in the northwest is obviously higher than that in the southeast including the city center.The annual spatial distribution of visibility turns out to decrease gradually from northwest to southeast.And the highest visibility in a year in Beijing happens in spring and the lowest is in summer.The maximum is in May and the minimum is in July.The lowest visibility in a day happens at about 0600 BT, which postpones in winter.The visibility peak happens at about 1600 BT, which advances in winter.Results show the probability of low visibility events is 62.14% in Beijing.Dry haze happens more frequently than wet haze.In addition, as for the case studies, it should be noted that, when the wet haze event occurs, visibility in Beijing deteriorates more obviously than that in the dry haze event.And PM2.5 concentration in the wet haze events is needed to drop more for improving visibility than that in the dry haze event.
-
Key words:
- Beijing;
- visibility;
- surface factors;
- typical haze events
-
表 1 不同相对湿度条件下的能见度及其影响因子
Table 1 Visibility and its influencing factors under different relative humidity conditions
相对湿度/% 频率/% PM2.5浓度/(μg·m-3) 风速/(m·s-1) 能见度/m 能见度与PM2.5相关系数 [0, 10) 0.36 28.59 2.06 18158.26 -0.02 [10, 20) 7.00 29.09 1.73 17020.12 -0.39* [20, 30) 12.73 39.30 1.38 14685.35 -0.53* [30, 40) 12.77 55.12 1.11 12066.52 -0.54* [40, 50) 11.89 70.05 0.94 10047.71 -0.55* [50, 60) 11.99 82.74 0.84 8352.04 -0.62* [60, 70) 12.42 88.10 0.69 7103.22 -0.61* [70, 80) 11.49 91.87 0.60 5796.74 -0.59* [80, 90) 9.96 90.07 0.56 4592.97 -0.56* [90, 100) 9.38 81.57 0.43 3232.45 -0.47* 注:*表示相关系数通过0.01的显著性水平。 表 2 不同能见度等级下的影响因子
Table 2 Influencing factors of visibility under different visibility grades
能见度/m 频率/% PM2.5浓度/(μg·m-3) 风速/(m·s-1) 相对湿度/% [0, 500) 0.30 176.41 0.23 97.18 [500, 1000) 1.94 174.64 0.41 91.39 [1000, 2000) 8.96 144.73 0.60 81.39 [2000, 3000) 9.47 112.26 0.65 72.76 [3000, 4000) 8.08 95.51 0.74 65.44 [4000, 5000) 7.69 83.63 0.77 61.61 [5000, 6000) 6.85 74.81 0.86 57.00 [6000, 7000) 5.91 67.68 0.91 54.80 [7000, 8000) 5.09 61.23 0.93 52.65 [8000, 9000) 4.32 55.81 0.99 50.65 [9000, 10000) 3.53 52.16 0.99 47.95 [10000, 20000) 37.86 32.72 1.13 37.96 表 3 干霾不同等级下的能见度及其影响因子
Table 3 Visibility and its influencing factors under dry haze grades
干霾 频率/% PM2.5浓度/(μg·m-3) 相对湿度/% 能见度/m 风速/(m·s-1) 轻微 51.14 67.20 48.71 7209 0.98 轻度 27.48 98.05 56.22 4003 0.81 中度 13.01 133.08 62.16 2495 0.71 重度 8.37 190.61 67.50 1559 0.78 表 4 湿霾不同等级下的能见度及其影响因子
Table 4 Visibility and its influencing factors under wet haze grades
湿霾 频率/% PM2.5浓度/(μg·m-3) 相对湿度/% 能见度/m 风速/(m·s-1) 轻微 3.51 94.38 83.17 6330 0.51 轻度 14.45 106.07 85.05 3767 0.59 中度 23.84 112.09 86.24 2406 0.62 重度 58.20 158.44 87.62 1334 0.48 -
[1] Christine S S, Peter J G.Denver's visibility history.Atmospheric Environment, 1981, 15(12):2631-2638. doi: 10.1016/0004-6981(81)90085-8 [2] Okada K, Isono K.Trends in visibility in the urban atmosphere:a case study in Nagoya.J Meteor Soc Japan, 1982, 60(2):777-786. doi: 10.2151/jmsj1965.60.2_777 [3] 王继志, 徐祥德, 杨元琴.北京城市能见度及雾特征分析.应用气象学报, 2002, 13(特刊):160-169. http://d.old.wanfangdata.com.cn/Periodical/yyqxxb2002z1018 [4] 范引琪, 李二杰, 范增禄.河北省1960-2002年城市大气能见度的变化趋势.大气科学, 2005, 29(4):526-535. http://www.oalib.com/paper/4879851 [5] Chang D, Song Y, Liu B.Visibility trends in six megacities in China 1973-2007.Atmos Res, 2009, 94:161-167. doi: 10.1016/j.atmosres.2009.05.006 [6] 黄健, 吴兑, 黄敏辉, 等.1954-2004年珠江三角洲大气能见度变化趋势.应用气象学报, 2008, 19(1):61-70. doi: 10.11898/1001-7313.20080111 [7] 刘西川, 高太长, 刘磊, 等.降水现象对大气消光系数和能见度的影响.应用气象学报, 2010, 21(4):433-441. doi: 10.11898/1001-7313.20100406 [8] 吴息, 孙朋杰, 刘渝, 等.基于雾条件下能见度估算的导线覆冰气象模型.应用气象学报, 2012, 23(6):755-762. doi: 10.11898/1001-7313.20120613 [9] Sloane C S.Visibility trends-Ⅱ Mideastern United States 1948-1978.Atmos Environ, 1982, 16:2309-2321. doi: 10.1016/0004-6981(82)90117-2 [10] 赵习方, 徐晓峰.北京地区低能见度区域分布初探.气象科技, 2001, 29(4):19-22. http://www.cqvip.com/QK/95348X/200211/7014504.html [11] 韩毓, 白志鹏, 孙韧.颗粒物质量浓度对大气能见度水平影响分析.环境监测管理与技术, 2008, 20(4):60-61. http://d.old.wanfangdata.com.cn/Periodical/hjjcglyjs200804017 [12] 陈义珍, 赵丹, 柴发合, 等.广州市与北京市大气能见度与颗粒物质量浓度的关系.中国环境科学, 2010, 30(7):967-971. http://www.cnki.com.cn/Article/CJFDTOTAL-ZGHJ201007021.htm [13] 林云, 孙向明, 张小丽, 等.深圳市大气能见度与细粒子浓度统计模型.应用气象学报, 2009, 20(2):252-256. doi: 10.11898/1001-7313.20090216 [14] Covert D S, Charlson R J, Ahlquist N C.A study of the relationship of chemical composition and humidity to light scatter in gbyaerosols.J Appl Meteor, 1972, 11:968-976. doi: 10.1175/1520-0450(1972)011<0968:ASOTRO>2.0.CO;2 [15] Cheng M T, Tasi Y I.Characterization of visibility and atmospheric aerosols in urban, suburban, and remote areas.The Science of the Total Environment, 2000, 263(1-3):101-114. doi: 10.1016/S0048-9697(00)00670-7 [16] 施红, 陈敏, 韩晶晶.上海浦东地区大气能见度的变化特征及影响因子分析.大气科学研究与应用, 2008(2):1-8. http://www.doc88.com/p-1823146678565.html [17] 梁延刚, 胡文志, 杨敬基.香港能见度、大气悬浮粒子浓度与气象条件的关系.气象学报, 2008, 66(3):461-469. doi: 10.11676/qxxb2008.042 [18] Bäumer D, Vogel B, Versick S.Relationship of visibility, aerosol optical thickness and aerosol size distribution in an ageing air mass over Southwest Germany.Atmos Environ, 2008, 42(5):989-998. doi: 10.1016/j.atmosenv.2007.10.017 [19] 宋明, 韩素芹, 张敏, 等.天津大气能见度与相对湿度和PM10及PM2.5的关系.气象与环境学报, 2013, 29(2):34-41. http://www.doc88.com/p-0476869713676.html [20] 苏维瀚, 张秋彭, 沈济, 等.北京地区大气能见度与大气污染的关系初探.大气科学, 1986, 10(2):138-144. http://www.cnki.com.cn/Article/CJFDTOTAL-DQXK198602003.htm [21] 宋宇, 唐孝炎, 方晨, 等.北京市能见度下降与颗粒物污染的关系.环境科学学报, 2003, 23(4):468-471. http://d.wanfangdata.com.cn/Periodical_hjkxxb200304011.aspx [22] 王淑英, 张小玲, 徐晓峰.北京地区大气能见度变化规律及影响因子统计分析.气象科技, 2003, 31(2):109-114. http://www.cqvip.com/QK/93750X/200302/8112366.html [23] 王京丽, 刘旭林.大气细粒子质量浓度与能见度定量关系初探.气象学报, 2006, 64(2):221-227. doi: 10.11676/qxxb2006.022 [24] 边海, 韩素芹, 张裕芬, 等.天津市大气能见度与颗粒物污染的关系.中国环境科学, 2012, 32(3):406-410. http://manu36.magtech.com.cn/Jweb_zghjkx/CN/Y2012/V32/I3/406 [25] 赵秀娟, 徐敬, 张自银, 等.北京区域环境气象数值预报系统及PM2.5预报检验.应用气象学报, 2016, 27(2):160-172. doi: 10.11898/1001-7313.20160204 [26] 颜鹏, 刘桂清, 周秀骥, 等.上甸子秋冬季雾霾期间气溶胶光学特性.应用气象学报, 2010, 21(3):257-265. doi: 10.11898/1001-7313.20100301 [27] 吴洪, 邵洁.北京地区大雾形成的分析和预报.应用气象学报, 2000, 11(1):123-127. http://qikan.camscma.cn/jams/ch/reader/view_abstract.aspx?file_no=20000118&flag=1 [28] 孟燕军, 王淑英, 赵习方.北京地区大雾日大气污染状况及气象条件分析.气象, 2000, 26(3):40-42. doi: 10.7519/j.issn.1000-0526.2000.03.009 [29] 中国气象局. 《霾的观测和预报等级》(QX/T113-2010). 2010. [30] 邱金桓.北京等地气象能见度的变化特征分析.大气科学, 1986, 10(4):437-442. [31] 宋艳玲, 董文杰, 张尚印, 等.北京市城/郊气候要素对比研究.干旱气象, 2003, 21(3):63-68. http://www.cnki.com.cn/Article/CJFDTOTAL-GSQX200303010.htm [32] Zhang Q H, Zhang J P, Xue H W.The challenge of improving visibility in Beijing.Atmospheric Chemistry and Physics, 2010, 10:7821-7827. doi: 10.5194/acp-10-7821-2010 [33] 杜荣光, 齐冰, 胡德云, 等.杭州市区相对湿度及PM2.5对能见度的影响分析.南京大学学报(自然科学版), 2015, 51(3):473-480. http://www.cmsjournal.net/qxxb_cn/ch/reader/view_abstract.aspx?file_no=2016069&flag=1 [34] 白永清, 祁海霞, 刘琳, 等.武汉大气能见度与PM2.5浓度及相对湿度关系的非线性分析及能见度预报.气象学报, 2016, 74(2):189-199. http://www.doc88.com/p-0476869713676.html [35] 王英, 李令军, 李成才.北京大气能见度和消光特性变化规律及影响因素.中国环境科学, 2015, 35(5):1310-1318. http://www.cnki.com.cn/Article/CJFDTOTAL-ZGHJ201505004.htm [36] 周奕珂, 朱彬, 韩志伟, 等.长江三角洲地区冬季能见度特征及影响因子分析.中国环境科学, 2016, 36(3):660-669. http://www.cnki.com.cn/Article/CJFDTOTAL-ZGHJ201603005.htm [37] 杨军, 李子华, 黄世鸿.相对湿度对大气气溶胶粒子短波辐射特性的影响.大气科学, 1999, 23(2):239-247. http://www.cqvip.com/qk/91836X/199902/3404547.html [38] 颜鹏, 潘小乐, 汤洁, 等.北京市区大气气溶胶散射系数亲水增长的观测研究.气象学报, 2008, 66(1):111-119. http://www.cnki.com.cn/Article/CJFDTOTAL-QXXB200801010.htm [39] 于凤莲, 刘东贤, 胡英.有关气溶胶细粒子对城市能见度影响的研究.气象科技, 2002, 30(6):379-383. http://mall.cnki.net/magazine/article/QXKJ200206013.htm