Methods of Aircraft-based Precipitation Enhancement Operation for Convective-stratiform Mixed Clouds in Autumn in Hunan Province
-
摘要: 统计分析2007—2016年秋季湖南省长沙市地面气象观测资料、湖南省飞机人工增雨作业资料, 得到湖南省秋季积层混合云系的降水分布情况、一般结构特征和相应的飞机增雨作业方法。使用多普勒天气雷达、GRAPES_CAMS数值模式和中小尺度气象站网等资料对典型作业天气过程进行云降水物理和数值模拟分析, 采用成对对流云和基于TREC算法的回波跟踪等方法进行作业效果评估。归纳得到湖南省秋季积层混合云系人工增雨作业条件判别的12个宏微观指标, 探讨在使用运7飞机、碘化银烟条作业装备条件下, 开展飞机增雨作业的最佳催化时机、部位和剂量。针对积层混合云系中的降水性层状云系、积云对流泡, 飞机增雨适宜作业的区域、播撒高度和催化剂量:在过冷高层云的-15~-5℃层, 播撒达到30 L-1的人工冰晶浓度; 在过冷积云的-15~-7℃层, 静力催化使冰晶浓度达到30 L-1或动力催化达到100 L-1。这些方法在实践中取得了较好的人工增雨作业效果。Abstract: Based on ground meteorological observations at Changsha of Hunan, and the aircraft artificial precipitation enhancement operation data in autumn of recent 10 years in Hunan, some statistical analysis results on the convective-stratiform mixed clouds systems are obtained, including the distribution of precipitation, structure characteristics and the seeding method of aircraft artificial precipitation enhancement operation.Physical characteristics of typical operation weather processes are analyzed by using Doppler radar data, the numerical model GRAPES_CAMS, and meso-scale meteorological data.Paired convective clouds and the echo tracking method based on TREC algorithm are used for effect evaluation.12 macro and micro parameters are picked out as indicators of artificial precipitation enhancement operation with convective-stratiform mixed clouds, including precipitation weather situation, the main cloud system, cloud-top height, cloud-top temperature, cloud thickness, seeding layer height, seeding layer temperature, seeding layer relative humidity, radar echo intensity, vertically integrated liquid, supercooled water content, rainfall situation and so on.The best seeding time, position and catalyst amount of the artificial precipitation enhancement operation using Yun-7 aircraft and AgI catalyst are discussed.For convective-stratiform mixed clouds including precipitus stratiform clouds and cumulus clouds, the most suitable area, seeding height and catalyst dosage of the operation are summarized.In supercooled -15 to -5℃ layer of altostratus cloud, seeding catalyst could make the artificial ice crystal concentration reach 30 L-1; in supercooled -15 to -7℃ layer of cumulus cloud, static seeding catalyst makes the concentration 30 L-1 while dynamic seeding catalyst makes it 100 L-1.These operation methods achieves good results in the practice of artificial precipitation enhancement.Among more than 40 times aircraft precipitation enhancement operation practice in recent 8 years, cold cloud catalyst seeding in precipitus stratiform clouds in convective-stratiform mixed clouds system usually leads to light rain (1-10 mm); cold cloud catalyst seeding in cumulus clouds in convective-stratiform mixed clouds system usually lead to small to moderate rain (5-17 mm); another 4 operations of warm cloud catalyst seeding in relatively stable stratiform warm clouds maintaining more than 12 h only bring slight enhancement of precipitation (0.1 mm).In the future, airborne meteorological equipment should be developed for cloud physics detection, especially for the detection and study of cumulus.Based on improved performance indicators of cumulus seeding, the cloud physics concept model of cumulus cloud artificial precipitation in southern China can be gradually established.
-
图 3 2015年9月18日飞机增雨作业后3 h实况累积降水量
(黑色框为飞机增雨作业影响区, 红色圈为积云绕飞穿云作业区)
Fig. 3 Observed accumulated rainfall after 3 h of the aircraft precipitation enhancement operation on 18 Sep 2015
(the black box is the the affected area of aircraft precipitation enhancement, the red circle is the seeding area of aircraft precipitation enhancement through the cumulus clouds)
表 1 长沙地区秋季典型作业云系的雷达回波特征
Table 1 Radar echo features of typical operating clouds in autumn of Changsha
云系名称 探测日期 日降雨量/mm 14:00云量/成 14:00多普勒天气雷达回波 产品分类 组合反射率因子/dBZ 距离高度显示/km 回波顶高/km 垂直积分液态含水量/(kg·m-2) 鬃积雨云
(Cbcap)2010-09-05 42.5 10 主要回波 30~35 H5 dBZ≤10, H15 dBZ≤8
H30~35 dBZ≤66~8 1 最大回波 45 H45 dBZ为4~4.5 9 5 蔽光层积云
(Scop)2011-09-30 15.7 10 主要回波 20~25 H5 dBZ≤11, H15 dBZ≤5.5,
H20~25 dBZ为2~33~5 小于1 最大回波 30 H30 dBZ为1.5~2.5 8 1 蔽光高层云
(Asop)2011-11-30 13.4 10 主要回波 30~35 H5 dBZ≤13, H15 dBZ≤6,
H30~35 dBZ为1~33~5 1 最大回波 40 H40 dBZ=2.5 8 1 透光高积云
(Actra)2011-09-26 7 主要回波 20~25 H5 dBZ≤10, H15 dBZ≤5.5,
H20~25 dBZ为0~33~5 小于1 最大回波 30 H30 dBZ=1.5 8 1 表 2 湖南省秋季积云或积层混合云系人工增雨作业条件判别宏微观指标
Table 2 Macro and micro indicators of artificial precipitation enhancement operation with cumulus and convective-stratiform mixed clouds in autumn of Hunan Province
判据 判别方法与获取途径 指标 天气形势 天气图 高空低槽、副热带高压边缘、台风影响、中低层切变 主要云系 卫星云图 积云、积层混合云系 云顶高度 天气雷达 回波顶高为5~9 km 云体厚度 天气雷达 不小于3.5 km 云顶温度 探空、卫星云图 -25~-5℃ 催化层高度 天气雷达 4.5~6 km 催化层温度 探空 -10~0℃ 催化层相对湿度 探空 不低于90% 雷达回波强度 天气雷达 15~35 dBZ 垂直积分液态水含量 天气雷达 不低于1 kg·m-2 过冷水含量 中尺度数值模式 不低于0.05 g·kg-1 降雨实况 中小尺度气象站网 雨区边缘、即将降雨、开始降雨 表 3 近年湖南省典型积云或积层混合云系飞机增雨作业过程主要作业参数统计表
Table 3 Main operation parameters of artificial precipitation enhancement operation by aircraft with cumulus clouds or concective-stratiform mixed clouds of recent years in Hunan Province
作业参数 作业过程 20110908 20130811 20130813 20130817 20130818 20150918 天气形势 高空低槽 副高边缘 台风外围 台风外围 台风外围 高空低槽 主要作业云系 积层混合 积云 积层混合 积层混合 积层混合 积层混合 雷达回波强度/dBZ 10~35 10~35 15~35 15~40 10~30 15~35 雷达回波顶高/km 7~8 7~8 8~10 6~9 6~8 6~8 垂直积分液态水含量/(kg·m-2) 5~10 5~10 5~10 5 5 1~5 云顶温度/℃ -15 -20 -25 -25 -20 -15 云体厚度/km 5 5~7 6~8 5~7 5~7 3.5~7 过冷水含量/(g·kg-1) 0.05~1 0.05~1 0.05~0.5 0.05 催化方式 冷云 冷云 冷云 冷、暖云 冷、暖云 冷云 催化层高度/km 5.4~5.7 5.4~5.8 5.4 5.4 5.4 6 催化层温度/℃ -2~-5 -3~-7 -5 -3 -3 -7 催化层相对湿度/% 90% 90% 90% 90% 95% 95% 作业后3 h雨量/mm 4~5 1~15 1~20 1~10 1~5 1~10 注:表中暖云催化方式是使用ZY-1NY吸湿性焰条, 燃烧产物主要是KCl, CaCl2。 -
[1] 马培民, 孙奕敏, 赵瑞华, 等.1963年夏季湖南盐粉催化浓积云降水试验效果的分析.气象学报, 1965, 37(3):280-292. doi: 10.11676/qxxb1965.032 [2] 王治平, 唐林, 张中波, 等.湖南省50年来人工增雨试验及积云研究//中国人工影响天气事业50周年纪念文集.北京:气象出版社, 2009:102-105. [3] 姚展予.中国气象科学研究院人工影响天气研究进展回顾.应用气象学报, 2006, 17(6):786-795. doi: 10.11898/1001-7313.20060616 [4] 叶家东, 李如祥.积云动力学.北京:气象出版社, 1988:31-33. [5] 陈佑淑, 蒋瑞宾.气象学.北京:气象出版社, 1989:310-311. [6] 游来光, 马培民, 胡志晋.北方层状云人工降水试验研究.气象科技, 2002, 30(增刊Ⅰ):19-63. http://industry.wanfangdata.com.cn/dl/Detail/Cstad?id=Cstad_940591&type=Free [7] 胡志晋.层状云人工增雨机制、条件和方法的探讨.应用气象学报, 2001, 12(增刊Ⅰ):10-13. http://d.old.wanfangdata.com.cn/Periodical/yyqxxb2001z1002 [8] 李永振, 李茂伦, 李薇, 等.北方降水性层状云人工增雨潜力区的逐步判别研究.应用气象学报, 2003, 14(4):430-436. http://qikan.camscma.cn/jams/ch/reader/view_abstract.aspx?file_no=20030453&flag=1 [9] 蒋年冲, 吴必文, 袁野, 等.江淮地区对流云人工增雨技术研究基地的可行性分析.应用气象学报, 2003, 14(增刊Ⅰ):151-155. http://d.old.wanfangdata.com.cn/Periodical/yyqxxb2003Z1018 [10] 胡雯, 申宜运, 曾光平.南方夏季对流云人工增雨技术研究.应用气象学报, 2005, 16(3):413-416. doi: 10.11898/1001-7313.20050317 [11] 孙晶, 史月琴, 蔡淼, 等.南方三类云系云结构预报和增雨作业条件分析.气象, 2015, 41(11):1356-1366. doi: 10.7519/j.issn.1000-0526.2015.11.005 [12] Rosenfeld D, woodley W L.Effects of cloud seeding in west Texax:Additional results and new insights.J Appl Meteor, 1993, 32:1848-1866. doi: 10.1175/1520-0450(1993)032<1848:EOCSIW>2.0.CO;2 [13] 蒋年冲, 曾光平, 袁野, 等.夏季对流云人工增雨效果评价方法初探.气象科学, 2008, 28(1):100-104. http://d.old.wanfangdata.com.cn/Periodical/qxkx200801017 [14] 贾烁, 姚展予.江淮对流云人工增雨作业效果检验个例分析.气象, 2016, 42(2):238-245. doi: 10.7519/j.issn.1000-0526.2016.02.012 [15] 韩嗣荧, 熊华南.湖南省夏秋季积云可播度探讨.气象, 1993, 19(3):13-16. doi: 10.7519/j.issn.1000-0526.1993.03.003 [16] 刘耀宗, 王治平, 陈历舒.湖南单块积云高炮增雨随机化试验效果的分析.气象, 1999, 25(8):16-21. doi: 10.7519/j.issn.1000-0526.1999.08.004 [17] 黄美元, 洪延超, 徐华英, 等.层状云对积云发展和降水的影响—一种云与云之间影响的数值模拟.气象学报, 1987, 45(1):72-77. doi: 10.11676/qxxb1987.009 [18] 胡志晋, 苏茂, 李如祥, 等.长沙夏季积云宏观特征的观测分析//中国南方云物理学和人工降水论文集.北京:气象出版社, 1986:1-8. [19] 周益辉, 唐林, 曾光平, 等.南方夏秋干旱期间的天气气候特征.应用气象学报, 2003, 14(增刊Ⅰ):118-125. http://d.old.wanfangdata.com.cn/Periodical/yyqxxb2003Z1014 [20] 徐永胜, 刘耀宗, 韩嗣荧.夏、秋积云的雷达回波和降水特征及其估算.应用气象学报, 1992, 3(3):334-339. http://qikan.camscma.cn/jams/ch/reader/view_abstract.aspx?file_no=19920355&flag=1 [21] 朱士超, 郭学良.华北积层混合云中冰晶形状、分布与增长过程的飞机探测研究.气象学报, 2014, 72(2):366-389. doi: 10.11676/qxxb2014.013 [22] 中国气象局科技教育司. 飞机人工增雨(雪)作业业务规范(试行). 2002: 54. [23] 黄美元, 徐华英.云和降水物理.北京:科学出版社, 1999:227. [24] 郭学良, 杨军, 章澄昌.大气物理与人工影响天气.北京:气象出版社, 2011. [25] 余兴, 戴进.层状云中飞机人工增雨作业间距的研究.大气科学, 2005, 29(3):465-474. http://www.docin.com/p-504208496.html [26] 苏正军, 郑国光, 酆大雄.吸湿性物质催化云雨的研究进展.高原气象, 2009, 28(1):227-232. http://www.oalib.com/paper/4181331 [27] 王以琳.山东人工增雨宏观条件分析.应用气象学报, 2001, 12(增刊Ⅰ):164-168. http://d.old.wanfangdata.com.cn/Periodical/yyqxxb2001z1022 [28] 中国气象局科技发展司.人工影响天气岗位培训教材.北京:气象出版社, 2003. [29] 郭学良, 杨军, 章澄昌.大气物理与人工影响天气.北京:气象出版社, 2011:264-267. [30] 张佃国, 郭学良, 龚佃利, 等.山东省1989-2008年23架次飞机云微物理结构观测试验结果.气象学报, 2011, 69(1):195-207. doi: 10.11676/qxxb2011.017 [31] 张中波, 仇财兴, 王治平, 等.一次积层混合云系人工增雨作业的综合观测分析.气象科技, 2014, 42(5):897-904. http://industry.wanfangdata.com.cn/dl/Detail/Periodical?id=Periodical_qxkj201405030 [32] 李集明, 周毓荃, 陶玥.2013年南方干旱人工影响天气技术交流论文集.北京:气象出版社, 2015:78-128. [33] 汪玲, 刘黎平.人工增雨催化区跟踪方法与效果评估指标研究.气象, 2015, 41(1):84-91. http://www.cnki.com.cn/Article/CJFDTOTAL-QXXX201501010.htm [34] 陈超, 刘黎平, 王改利, 等.人工影响天气中雷达回波跟踪方法及其应用.气象科技, 2012, 40(3):459-496. http://d.wanfangdata.com.cn/Periodical_qxkj201203029.aspx [35] 马建立, 王改利, 金永利, 等.TREC算法在人工影响天气系统中的应用.气象科技, 2011, 39(2):236-239. https://www.wenkuxiazai.com/doc/be6e1a6c1ed9ad51f01df266.html [36] 仲凌志, 刘黎平, 顾松山.层状云和对流云的雷达识别及在估测雨量中的应用.高原气象, 2007, 26(3):593-602. http://d.old.wanfangdata.com.cn/Periodical/gyqx200703022