The Upgrade of GRAPE_TYM in 2016 and Its Impacts on Tropical Cyclone Prediction
-
摘要: 为了进一步提高国家气象中心区域模式台风数值预报系统(GRAPES_TYM)的预报能力,2016年对模式参考大气廓线以及涡旋初始化方案进行了改进:由模式初始场水平方向平均的一维参考大气代替原来的等温大气,涡旋初始化方案取消了原涡旋重定位并将涡旋强度调整半径由原来的12°减小到4°。对2014—2016年的生命史超过3 d的所有台风进行了回算,路径及近地面最大风速统计误差分析表明:参考大气的改进可以减小模式对台风预报路径预报的系统北偏和平均路径误差,尤其是140°E以东的转向台风。涡旋初始化方案中强度调整半径的减小会进一步减小模式预报路径的北偏趋势,从而进一步减小平均误差。同业务系统预报结果相比,改进后的GRAPES_TYM(包括参考大气和涡旋初始化)可以使平均路径误差分别减小10%(24 h),12%(48 h),16%(72 h),14%(96 h)以及15%(120 h)。同美国NCEP全球模式路径预报相比,GRAPES_TYM在西行、西北行登陆我国的台风路径预报有一定优势。Abstract: The model reference profile and the vortex initialization scheme in GRAPES_TYM of China National Meteorological Center are modified in 2016 to improve the ability of tropical cyclone (TC) track and intensity prediction.The reference atmosphere profile is often applied in numerical weather prediction model to guarantee model integration stability and the accuracy. The reference atmosphere profile of isothermal temperature is replaced by a profile based on the horizontal mean of the model initial condition in GRAPES_TYM. It could decrease the amplitude of the perturbation of potential temperature and pressure and increase the accuracy and stability of model integration.The TC vortex initialization is a key factor to TC track and intensity numerical prediction. The TC vortex initialization scheme in GRAPES_TYM includes two parts:Vortex relocation (the vortex in the analyzed field is moved to the location analyzed by forecasters) and intensity correction. The modification of vortex initialization scheme includes two aspects:The relocation of vortex is removed, the radius of correction of the intensity is reduced to 4° from 12° in order to weaken the influence on the outer circulation of TC, which is assumed well analyzed by global model with higher resolution that provides the initial and boundary conditions for regional model.Experiments are carried out twice a day using 2014-2016 main TCs which last more than 72 h. Results show that upgrade of reference atmosphere profile could reduce the northward bias and the mean track errors especially for the mid-turning typhoon around 140°E. The modification of the radius of the intensity correction from 12° to 4° could improve TC track prediction especially for 0-72 h. GRAPES_TYM with the upgrade of reference profile and vortex initialization scheme could reduce the mean track errors by 10%(24 h), 12%(48 h), 16%(72 h), 14(96 h), and 15%(120 h) compared with the operational system.Results from 2014-2016 are also compared with results of NCEP global forecast system (NCEP-GFS). Mean track errors of GRAPES_TYM are larger than those. The track error differences are 9.2 km(24 h), 17.2 km(48 h), 18.4 km(72 h), 41.1 km(96 h) and 60.3 km(120 h), which are generally within 50 km except for 120 h prediction. GRAPES_TYM performs better than NCEP-GFS for TCs moving westward or northwestward and landing at the coast of China. The mean TC intensity errors of GRAPES_TYM within 72 h are smaller than those of NCEP-GFS.It can be found from the above results that the regional model improvements are more important for TC track prediction compared with improvements of model initial conditions which come from the global model, especially when the resolution of global model get higher and more data are assimilated. Therefore, more efforts should be put into the regional model optimization and improvement in the future.
-
图 1 2015年10月14日12:00采用不同参考大气的位温θ和气压Π的平均扰动量垂直分布(平均扰动量为22°N,90°~170°E平均)(a)平均位温扰动,(b)Exner气压扰动
Fig. 1 Vertical profile of mean perturbation of potential temperature and Exner pressure based on isothermal atmosphere and initial state mean reference profiles at 1200 UTC 14 Oct 2015(the mean perturbation is averaged between 90°-170°E at 22°N)(a)perturbation of potential temperature, (b)perturbation of Exner pressure
图 3 平均路径误差(a)、移向偏差(b)及相对技巧(c)
(TYM:业务模式;TYM_REF:参考大气改进;REF_VTX:基于参考大气改进的涡旋初始化改进)
Fig. 3 Mean track error(a), bias of cross-track(b) and skill(c)
(TYM:operational model; TYM_REF:upgrade of reference profile; REF_VTX:update of vortex initialization based on the upgrade of atmospheric reference profile)
图 4 预报路径误差分布区域
(a)GRAPES_TYM业务预报的48 h路径误差,(b)GRAPES_TYM业务预报的120 h路径误差,(c)参考大气改进后的48 h路径误差,(d)参考大气改进后的120 h路径误差,(e)涡旋初始化改进后的48 h路径误差,(f)涡旋初始化改进后的120 h路径误差
Fig. 4 Distributions of track errors
(a)48 h tracks of operational model, (b)120 h tracks of operational model, (c)48 h tracks of initial condition mean reference profile upgrade, (d)120 h tracks of initial condition mean reference profile upgrade, (e)48 h tracks of the vortex initialization upgrade, (f)48 h tracks of the vortex initialization upgrade
图 6 台风蔷琵(1525)预报路径
(黑色为最佳路径,路径上的标注为日期,13表示13日00:00, 其他颜色为不同初始时刻的预报路径,预报间隔为12 h即00:00和12:00) (a)业务模式,(b)参考大气改进的预报路径,(c)基于参考大气改进的涡旋初始化改进预报路径
Fig. 6 Forecast tracks of Typhoon Champi(2015)
(black: best track; colors: forecast tracks with different initial time with interval of 12 h, i.e., 0000 UTC and 1200 UTC) (a)operational model, (b)upgrade of initial condition mean profile, (c)upgrade of vortex initialization based on upgraded reference profile
图 8 台风蔷琵(1525)10 m风速
(黑色为最佳路径,其他颜色为不同初始时刻的预报路径,预报间隔为12 h,即00:00和12:00) (a)业务模式,(b)参考大气改进后的预报路径,(c)基于参考大气改进的涡旋初始化改进的预报路径
Fig. 8 Maximum 10 m wind of Typhoon Champi (1525)
(black:best track; colors:forecast tracks with different initial time with interval of 12 h, i.e., 0000 UTC and 1200 UTC) (a)operational model, (b)upgrade of initial condition mean profile, (c)upgrade of vortex initialization based on upgraded reference profile
-
[1] 杨兆礼, 陈子通.区域模式参考大气扰动量算法的预报试验.热带气象学报, 2014, 30(6):1107-1112. http://www.cnki.com.cn/Article/CJFDTotal-RDQX201406011.htm [2] 张红亮, 黄丽萍, 陈嘉宾.一种依赖初始场构造的参考大气廓线及对高原地区预报的影响.高原气象, 1996, 15(4):490-495. http://www.wanfangdata.com.cn/details/detail.do?_type=perio&id=gyqx200901002 [3] 陈子通, 戴光丰, 钟水新, 等.中国南海台风模式(TRAMS-V2.0)技术特点及其预报性能.热带气象学报, 2016, 32(6):831-840. http://industry.wanfangdata.com.cn/yj/Column/Paper?q=%e5%85%b3%e9%94%ae%e8%af%8d%3a%22%e6%95%b0%e5%80%bc%e9%a2%84%e6%8a%a5%22+DBID%3aWF_QK&f=sort&o=sortby+relevance [4] Liu Qingfu, Tim Marehok, Pan Hualu, et al. Inprovements in Hurricane Initialization and Forecasting at NCEP with Global and Regional (GFDL) Model. Technical Procedures Bulletin, NOAA, SN: 472, 2000. [5] 瞿安祥, 麻素红, Liu Q F, 等.全球数值模式中的台风初始化Ⅰ:方案设计.气象学报, 2009, 67(5):716-726. doi: 10.11676/qxxb2009.072 [6] 瞿安祥, 麻素红, 李娟, 等.全球数值模式中的台风初始化Ⅱ:业务应用.气象学报, 2009, 67(5):727-735. doi: 10.11676/qxxb2009.073 [7] 瞿安祥, 麻素红, 张进, 等.T639全球模式的台风涡旋初始化方案升级试验.气象, 2016, 42(6):664-673. doi: 10.7519/j.issn.1000-0526.2016.06.002 [8] Ueno M.A study on the impact of Asymmetric components around tropical cyclone center on the accuracy of Bogus data and the track forecast.Meteor Atmos Phy, 1995, 56(1-2):125-134. doi: 10.1007/BF01022525 [9] 吴俞, 麻素红, 肖天贵, 等.T213L31模式热带气旋路径数值预报误差分析.应用气象学报, 2011, 22(2):182-193. doi: 10.11898/1001-7313.20110207 [10] 麻素红, 吴俞, 瞿安祥, 等.T213与T639模式热带气旋预报误差对比.应用气象学报, 2012, 23(2):167-173. doi: 10.11898/1001-7313.20120205 [11] 鲁小琴, 雷小途, 余晖, 等.基于卫星资料进行热带气旋强度客观估算.应用气象学报, 2014, 25(1):52-58. doi: 10.11898/1001-7313.20140106 [12] 程正泉, 林良勋, 杨国杰, 等.超强台风威马逊快速增强及大尺度环流特征.应用气象学报, 2017, 28(3):318-326. doi: 10.11898/1001-7313.20170306 [13] 任强, 董佩明, 薛纪善.台风数值预报中受云影响微波卫星资料的同化试验.应用气象学报, 2009, 20(2):137-146. doi: 10.11898/1001-7313.20090202 [14] Wang Y Q.On the bogusing of tropical cyclones in numerical models:The influence of vertical structure.Meteorol Atmos Phy, 1998, 65(3):153-170. [15] 黄小刚, 费建芳, 陈佩燕.利用神经网络方法建立热带气旋强度预报模型.应用气象学报, 2009, 20(6):699-705. doi: 10.11898/1001-7313.20090607 [16] 麻素红, 吴俞, 瞿安祥, 等.T213与T639模式热带气旋预报误差对比.应用气象学报, 2012, 23(2):167-173. doi: 10.11898/1001-7313.20120205 [17] Nguyan H V, Chen Y L.High resolution initialization and simulations of Typhoon Morakot (2009).Mon Wea Rev, 2011, 139(3):1463-1491. [18] 张进, 麻素红, 陈德辉.GRAPES_TYM改进及其在2013年在西北太平洋及南海台风预报中的表现.热带气象学报, 2017, 33(1):64-72. [19] 陈德辉, 王诗文, 汪厚君.改进的物理过程参数化对台风路径数值预报的影响.应用气象学报, 1996, 7(1):1-8. http://qikan.camscma.cn/jams/ch/reader/view_abstract.aspx?file_no=19960101&flag=1 [20] 黄伟, 梁旭东.台风涡旋循环初始化方法及其在GRAPES-TCM中的应用.气象学报, 2010, 68(3):365-375. doi: 10.11676/qxxb2010.036 [21] Cha D H, Wang Y.A dynamical initialization scheme for real-time forecasts of tropical cyclones using the WRF model.Mon Wea Rev, 2013, 141(3):964-986. doi: 10.1175/MWR-D-12-00077.1 [22] Hendricks E A, Peng M S, Li T.Evaluation of multiple dynamic initialization schemes for tropical cyclone prediction.Mon Wea Rev, 2013, 141(11):4028-4048. doi: 10.1175/MWR-D-12-00329.1 [23] Kurihara Y, Bender M A, Tuleya R E, et al.Improvements in the GFDL hurricane prediction system.Mon Wea Rev, 1995, 123:2791-2801. doi: 10.1175/1520-0493(1995)123<2791:IITGHP>2.0.CO;2 [24] Wang Yuqing.An inverse balance equation in sigma coordinates for model initialization.Mon Wea Rev, 1995, 123:482-488. doi: 10.1175/1520-0493(1995)123<0482:AIBEIS>2.0.CO;2