Meteorological Model of Wire Icing Caused by Rime and Glaze Based on the Process Judgment
-
摘要: 利用2011年1月—2013年3月在贵州开展导线覆冰自动观测试验获取的观测资料,分析了覆冰过程演变及其气象条件变化特征,提出一次完整的导线覆冰过程包括覆冰开始、增长、维持、减弱、消融5个阶段,并得到覆冰过程的气象条件判别指标;基于导线覆冰理论模型的改进并结合气象条件判别,建立了基于过程判别的雨雾凇导线覆冰气象模式,应用该模式对观测获取的多个导线覆冰过程进行数值模拟检验。结果表明:模式能够模拟自然环境下覆冰的增长,并能够正确模拟出覆冰的减弱、消融,模拟过程覆冰质量变化的最大相对误差小于20%。该模式具有较完整的理论基础和计算方案,主要以常规气象观测要素为输入,能够计算输出覆冰全过程逐小时覆冰质量、覆冰厚度及覆冰密度变化,具有较大的应用前景。Abstract: Due to lack of detail observations of wire icing processes under natural environment, evolution characteristics of wire icing processes isn't very clear and the modeling is difficult. To solve this problem, under the support of the National Research Funds for Public Welfare, a special equipment for automatic monitoring the mass of ice accretion on wires is successfully trial-manufactured and employed in field observation experiments carried out in Guizhou. During the field observation experiments from January 2011 to March 2013, plenty of detail observations of wire icing process are obtained, including minutely evolution of ice mass and relative meteorological elements, which provide conditions for subsequent research. Using the experiment data, evolution characteristics of wire icing processes and relative meteorological conditions are investigated. Results show that there are five different evolution phases in the whole icing process, including beginning, growth, persistence, fading and dispelling of the ice-coat, and the judgment criteria of meteorological conditions are found out. A numerical model describing wire icing processes caused by rime and glaze is developed and applied to simulate observed wire icing processes.Based on the theoretical model frame for wire icing which is universally accepted, and combined with the judgment criteria of meteorological conditions, a numerical model of wire icing caused by rime and glaze based on the process judgment is presented. The model adopts improved parameterization schemes and algorithms, including respective procedures for rime and glaze icing, and takes the mass loss due to sublimation and surface evaporation into account. With the in-situ meteorological data combined with the judgment criteria of meteorological conditions, the numerical model is validated by applying to simulate observed wire icing processes. Modeling results show it is able to describe correctly the whole icing process, including growth, persistence, fading and dispelling of the ice-coat, with the maximum difference of ice-coat quality between modeling and observation less than 20%. Modeling errors come from two aspects, including calculation errors of the model itself and errors of meteorological data input. The icing model with common meteorological elements input can be used to calculate and hourly variation of mass, thickness and density of the ice-coat, and is of practical value for application. Under the condition of inputting with microphysics observations of real weather processes, the modeling result can be further improved. Furthermore, taking advantage of products from a refined local numerical weather forecast model, this icing model can be applied in predicting the evolution of the ice accretion on the real power transmission lines, and has wide application prospect.
-
Key words:
- wire icing;
- process judgment;
- meteorological model;
- numerical modeling
-
表 1 导线覆冰过程不同阶段的气象条件判别指标
Table 1 Meteorological conditions for different phases of icing process
阶段 温度 温度变化 湿度 湿度变化 降雨 雾 开始 不高于0℃ 下降 大于90% 稳定 有/无 无/有 增长 不高于0℃ 下降/维持 大于95% 稳定 有/无 无/有 维持 不高于0℃ 维持/上升 约90% 稳定 无 有/无 减弱 不高于0℃ 上升 小于85% 维持/下降 无 无 消融 高于0℃ 上升 小于80% 下降 有/无 无 -
[1] Lozowski E P, Stallabrass J R, Hearty P F.The icing of an unheated, nonrotating cylinder.Part Ⅰ.A simulation model.J Climate Appl Meteor, 1983, 22:2053-2062. doi: 10.1175/1520-0450(1983)022<2053:TIOAUN>2.0.CO;2 [2] Makkonen L.Modling of ice accretion on wires.Climate J App Meteor, 1984, 23(6):929-939. doi: 10.1175/1520-0450(1984)023<0929:MOIAOW>2.0.CO;2 [3] Jones K F.A Sample model for freezing rain ice loads.Atmos Res, 1998, 46:87-97. doi: 10.1016/S0169-8095(97)00053-7 [4] 谭冠日.电线积冰若干小气候特征的探讨.气象学报, 1982, 40(1):13-23. doi: 10.11676/qxxb1982.002 [5] 蒋兴良, 孙才新.三峡地区导线覆冰的特性及雾凇覆冰模型.重庆大学学报, 1998, 21(2):16-19. http://www.cnki.com.cn/Article/CJFDTOTAL-FIVE802.002.htm [6] 刘和云, 周迪, 付俊萍, 等.导线雨淞覆冰预测简单模型的研究.中国电机工程学报, 2001, 21(4):44-47. http://industry.wanfangdata.com.cn/dl/Detail/Periodical?id=Periodical_zgdjgcxb200104010 [7] 孙才新, 蒋兴良, 熊启新, 等.导线覆冰及其干湿增长临界条件分析.中国电机工程学报, 2003, 23(3):141-145. http://d.wanfangdata.com.cn/Periodical_zgdjgcxb200303030.aspx [8] 林锐, 陈允清, 蒋兴良.基于碰撞特性的导线雾凇覆冰厚度预测模型研究.高压电器, 2010, 46(11):43-49. http://www.wanfangdata.com.cn/details/detail.do?_type=perio&id=gydq201011011 [9] 刘春城, 刘佼.输电线路导线覆冰机理及雨凇覆冰模型.高电压技术, 2011, 37(1):241-248. http://www.cqvip.com/QK/90990X/201101/36484672.html [10] 牛生杰, 周悦, 贾然, 等.电线积冰微物理机制初步研究:观测和模拟.中国科学(地球科学), 2011, 41(12):1812-1821. http://www.oalib.com/paper/4151863 [11] 吴息, 孙朋杰, 熊海星, 等.利用常规气象资料建立的导线覆冰模型.大气科学学报, 2012, 35(3):335-341. http://www.wanfangdata.com.cn/details/detail.do?_type=perio&id=njqxxyxb201203009 [12] 邓芳萍, 康丽莉, 姜瑜君, 等.基于常规气象资料的小时标准冰厚模型及验证.应用气象学报, 2017, 28(2):142-156. doi: 10.11898/1001-7313.20170202 [13] 吴素良, 蔡新玲, 何晓媛, 等.陕西省电线积冰特征.应用气象学报, 2009, 20(2):247-251. doi: 10.11898/1001-7313.20090215 [14] 殷水清, 赵珊珊, 王遵娅, 等.全国电线结冰厚度分布及等级预报模型.应用气象学报, 2009, 20(6):722-728. doi: 10.11898/1001-7313.20090610 [15] 温华洋, 田红, 唐为安, 等.安徽省电线积冰标准冰厚的气象估算模型.应用气象学报, 2011, 22(6):747-752. doi: 10.11898/1001-7313.20110613 [16] 中国气象局.地面气象观测规范第15部分:电线积冰观测.北京:气象出版社, 2007. [17] 郑利兵, 陈林, 林云生, 等.基于气象观测规范的导线覆冰重量自动监测系统研究.气象, 2010, 36(10):97-101. doi: 10.7519/j.issn.1000-0526.2010.10.016 [18] 陈百炼, 胡欣欣, 陈林, 等.导线覆冰自动观测试验与覆冰过程分析.冰川冻土, 2016, 38(1):129-139. http://www.cqvip.com/QK/93756X/201601/668994687.html [19] 蒋兴良, 易辉.输电线路覆冰及防护.北京:中国电力出版社, 2002. [20] Masoud F. 电网的大气覆冰. 黄新波, 译. 北京: 中国电力出版社, 2010. [21] Finstad K J, Lozowski E P, Gates E M.A computational investigation of waterdroplet trajectories.J Atmos Oceanic Technol, 1988, 5:160-170. doi: 10.1175/1520-0426(1988)005<0160:ACIOWD>2.0.CO;2 [22] Finstad K J, Lozowski E P, Makkonen L.On the median volume diameter approximation for droplet collision efficiency.J Atmos Sci, 1988, 45:4008-4012. doi: 10.1175/1520-0469(1988)045<4008:OTMVDA>2.0.CO;2 [23] Makkonen L. The Origin of Spongy Ice//Proc 10th IAHR Symposium on Ice. 1990: 1022-1030. [24] Best A C.The size dist ribut ion of raindrops.Quart J R Met Soc, 1949, 75:16-36. doi: 10.1002/qj.49707632704/full?scrollTo=references [25] 吴息, 孙朋杰, 刘渝, 等.基于雾条件下能见度估算的导线覆冰气象模型.应用气象学报, 2012, 23(6):755-762. doi: 10.11898/1001-7313.20120613 [26] 江祖凡.云中含水量与温度.气象, 1985, 11(2):30-30. http://www.oalib.com/paper/5054446 [27] 文继芬.雨雾淞天气的滴谱、含水量与积冰.贵州气象, 1994, 18(6):21-26. http://www.cnki.com.cn/Article/CJFDTOTAL-NJFW201005051.htm [28] 罗宁, 文继芬, 赵彩, 等.导线积冰的云雾特征观测研究.应用气象学报, 2008, 19(1):91-95. doi: 10.11898/1001-7313.20080114 [29] Macklin W C.The density and structure of ice formed by accretion.Q J R Met Soc, 1962, 88:30-50. doi: 10.1002/(ISSN)1477-870X [30] Bain M, Gayet J F.Contribution to the modelling of the ice accretion process-ice density variation with the impacted surface angle.Ann Glaciol, 1983, 4:19-23. doi: 10.1017/S0260305500005176 [31] 纪威, 杨萱.湿空气热力参数的计算方程.暖通空调, 1996(3):16-19. http://www.cqvip.com/qk/93696X/199202/835482.html [32] 王颖, 刘小宁, 鞠晓慧, 等.自动观测与人工观测差异的初步分析.应用气象学报, 2007, 18(6):849-855. doi: 10.11898/1001-7313.200706128 [33] 李林, 范雪波, 崔炜, 等.称重与人工观测降水量的差异.应用气象学报, 2015, 26(6):688-694. doi: 10.11898/1001-7313.20150605