Initial Stage of Lightning Discharges Initiated by NBE and IBP
-
摘要: 基于闪电低频电场探测阵列(LFEDA)所获得的全闪三维定位数据,研究了2015年8月15日14:30—16:10广州一次雷暴过程中具有明显始发脉冲的闪电初始放电特征及放电规律。结果表明:212例近距离云闪和地闪中,32例闪电由窄偶极性放电事件(NBE)始发,占15%;180例闪电由初始击穿脉冲(定义初始击穿脉冲簇的首个脉冲为FIBP)始发,占85%。作为始发的窄偶极性放电事件(INBE),其相对孤立且具有较大的相对幅度,INBE与后续闪电的第1个脉冲的时间间隔为7 ms,幅度比为3.5,远大于FIBP相对应的时间间隔0.6 ms和幅度比0.8,INBE后多跟随传统的IBP脉冲。多数正极性INBE与FIBP对应初始向上发展的闪电,而负极性对应初始向下发展的闪电。INBE始发闪电前15 ms的平均发展速度随始发高度的增大而减小,快于FIBP,这与INBE具有更快的速度相关。估计的INBE速度为4.7×107 m·s-1,FIBP速度为1.5×107 m·s-1,两者速度差异也体现在脉冲上升时间方面,INBE具有更快的上升沿。Abstract: Lightning initial stage is an important and fundamental physical process. How lightning initiates is a hot topics in the research of lightning physics. Initial breakdown is observed by many researchers, and the first pulse of IBP is regarded as the starting marker of intracloud lightning or cloud-to-ground lighting. Lightning discharge characteristics and laws during initial stage in a thunderstorm progress are researched based on Low-frequency E-field Detection Array (LFEDA). In 212 intracloud lightnings and cloud-to-ground lightnings of short range, 32 lightnings are initiated by NBE, accounting for 15%, and 180 lightnings are initiated by IBP, accounting for 85%. As an initial NBE (INBE), it is more isolated and larger than the first pulse of initial IBP (FIBP). The average time interval from INBE to subsequent first pulse is 7 ms, with a mid-value of 3.9 ms. The amplitude ratio between INBE and the subsequent pulse is 3.5. The above values are larger than those of FIBP with the corresponding values of 0.6 ms, 0.2 ms and 0.8. Most of the positive INBE and FIBP corresponds to an upward discharge in the initial stage while negative correspond to a downward one. The average height of INBE is 9.9 km, which is less than isolated NBE of 13.6 km. There is also a sensible difference in discharge height between isolated positive NBE and the negative one. The isolated negative NBE is much higher than the positive one. It may occur between upper positive charge region and shielding layer, which is related to the middle and upper atmosphere discharge. The average height of FIBP is 8.1 km. There are no obvious differences in discharge height between INBE and FIBP. The average speed during the first 15 ms of the lightning initiated by NBE is 3.1×105 m·s-1, with a mid-value of 3.0×105 m·s-1, which decreases with the initial altitude. The maximum and minimum average speed is 7×105 m·s-1 and 1.2×105 m·s-1, respectively. To better reveal the difference in INBE and FIBP, an estimated velocity is calculated based on the hypothesis of low-frequency pulse corresponding to a channel extending. The estimated speed of INBE is 4.7×107 m·s-1, which is faster than FIBP with a velocity of 1.5×107 m·s-1. The shorter rising time for INBE also indicates a faster velocity. There are no apparent differences in rising time, half-peak width and pulse width for INBE, NBE in process and isolated NBE. It is difficult to distinguish INBE from other NBE by pulse property.
-
Key words:
- NBE;
- IBP;
- lightning initiation
-
图 4 各类型闪电初始高度分布特征
(a)INBE,FIBP,过程中NBE,(b)正极性FIBP和负极性FIBP,(c)过程中正极性NBE和过程中负极性NBE,(d)孤立正极性NBE和孤立负极性NBE
Fig. 4 Distribution characteristics of initial altitude for all-type lightning
(a)initial NBE, initial IBP, intra-NBE, (b)positive and negative initial IBP, (c)positive and negative intra-NBE, (d)positive and negative isolated NBE
表 1 闪电始发放电事件类型
Table 1 Types of initial lightning discharge events
样本极性 云闪INBE 云闪FIBP 地闪INBE 地闪FIBP 正极性 21 144 1 2 负极性 8 29 2 5 表 2 闪电始发放电事件发展方向统计
Table 2 Initial propagation direction of lightning discharge events
闪电类型 始发类型 个例数量 向上发展 向下发展 云闪 正极性INBE 21 20 1 负极性INBE 8 0 8 正极性FIBP 143 137 6 负极性FIBP 30 7 23 地闪 正极性INBE 1 1 0 负极性INBE 2 0 2 正极性FIBP 2 2 0 负极性FIBP 5 1 4 表 3 INBE与FIBP脉冲参数对比
Table 3 Parameters comparing between INBE and FIBP
参数 特征量 INBE FIBP 正极性 负极性 正极性 负极性 上升时间/μs 平均值 1.3 1.2 3.9 4.0 最大值 3.7 2.2 12.4 11.3 标准差 0.8 0.5 2.9 3.0 半峰宽/μs 平均值 3.0 1.6 2.3 2.9 最大值 7.8 3.2 9.0 8.2 标准差 2.0 0.8 1.8 1.8 脉冲宽度/μs 平均值 4.6 4.0 6.5 6.3 最大值 8.1 6.3 8.1 8.1 标准差 1.8 1.4 1.1 1.3 表 4 不同NBE脉冲波形参数对比
Table 4 Pulse waveform parameters comparing among different NBE
统计参数 特征量 INBE NBE 孤立NBE 正极性 负极性 正极性 负极性 正极性 负极性 上升时间/μs 平均值 1.3 1.2 1.4 1.3 1.4 1.1 最大值 3.7 2.2 4.0 3.1 7.2 2.1 标准差 0.8 0.5 1.0 0.6 1.2 0.4 半峰宽/μs 平均值 3.0 1.6 2.0 1.8 2.0 2.1 最大值 7.8 3.2 5.3 3.7 5.3 3.9 标准差 2.0 0.8 1.2 0.8 1.1 1.0 脉冲宽度/μs 平均值 4.6 4.0 4.1 4.2 4.2 3.9 最大值 8.1 6.3 8.1 6.7 8.1 5.5 标准差 1.8 1.4 1.6 1.1 1.4 1.0 -
[1] 钱勇, 张阳, 张义军, 等.人工触发闪电先驱电流脉冲波形特征及模拟.应用气象学报, 2016, 27(6):716-724. doi: 10.11898/1001-7313.20160608 [2] 张义军, 周秀骥.雷电研究的回顾和进展.应用气象学报, 2006, 17(6):829-834. doi: 10.11898/1001-7313.20060619 [3] 张义军, 孟青, 马明, 等.闪电探测技术发展和资料应用.应用气象学报, 2006, 17(5):611-620. doi: 10.11898/1001-7313.20060504 [4] 张义军, 杨少杰, 吕伟涛, 等.2006-2011年广州人工触发闪电观测试验和应用.应用气象学报, 2012, 23(5):513-522. doi: 10.11898/1001-7313.20120501 [5] 任晓毓, 张义军, 吕伟涛, 等.闪电先导随机模式的建立与应用.应用气象学报, 2011, 22(2):194-202. doi: 10.11898/1001-7313.20110208 [6] Kitagawa N.On the Electric Field-change due to the leader processes and some of their discharge mechanism.Papers in Meteorology & Geophysics, 1957, 7(4):400-414. [7] Clarence N D, Malan D J.Preliminary discharge processes in lightning flashes to ground.Quart J Roy Meteor Soc, 1957, 83(356):161-172. doi: 10.1002/(ISSN)1477-870X [8] Kitagawa N, Kobayashi M.Distribution of negative charge in the cloud taking part in a flash to ground.Pap Meteor Geophys, 1958, 9(2):99-105. doi: 10.2467/mripapers1950.9.2_99 [9] Kitagawa N, Brook M.A comparison of intracloud and cloud-to-ground lightning discharges.J Geophys Res, 1960, 65(4):1189-1201. doi: 10.1029/JZ065i004p01189 [10] Krider E P, Radda G J.Radiation field wave forms produced by lightning stepped leaders.J Geophys Res, 1975, 80(18):2653-2657. doi: 10.1029/JC080i018p02653 [11] Beasley W, Uman M A, Rustan P L.Electric fields preceding cloud-to-ground lightning flashes.Journal of Geophysical Research:Oceans, 1982, 87(C7):4883-4902. doi: 10.1029/JC087iC07p04883 [12] Zhang Y, Zhang Y J, Lu W T, et al.Analysis and comparison of initial breakdown pulses for positive cloud-to-ground flashes observed in Beijing and Guangzhou.Atmos Res, 2013, 129-130(Suppl):34-41. [13] Zhang Y, Zhang Y, Zheng D, et al.Preliminary breakdown, following lightning discharge processes and lower positive charge region.Atmos Res, 2015, 161-162:52-56. doi: 10.1016/j.atmosres.2015.03.017 [14] Zhang Y, Krehbiel P R, Zhang Y, et al.Observations of the initial stage of a rocket-and-wire-triggered lightning discharge.Geophys Res Lett, 2017, 44(9):4332-4340. doi: 10.1002/2017GL072843 [15] Rakov V A, Uman M A.Lightning:Physics and Effects.Cambridge:Cambridge University Press, 2003. [16] Nag A, Rakov V A.Some inferences on the role of lower positive charge region in facilitating different types of lightning.Geophys Res Lett, 2009, 36(5):126-127. doi: 10.1029/2008GL036783/citedby [17] 武斌, 张广庶, 文军, 等.闪电初始预击穿过程辐射脉冲特征及电流模型.应用气象学报, 2017, 28(5):555-567. doi: 10.11898/1001-7313.20170504 [18] Nag A, Rakov V A, Tsalikis D, et al.On phenomenology of compact intracloud lightning discharges.Journal of Geophysical Research:Atmospheres, 2010, 115(D14):1307-1314. doi: 10.1029/2009JD012957/full?scrollTo=references [19] Betz R D, Marshall T C, Stolzenburg M, et al.Detection of in-cloud lightning with VLF/LF and VHF networks for studies of the initial discharge phase.Geophys Res Lett, 2008, 35(23):186-203. doi: 10.1029/2008GL035820#references-section [20] Wu T, Yoshida S, Ushio T, et al.Lightning-initiator type of narrow bipolar events and their subsequent pulse trains.Journal of Geophysical Research:Atmospheres, 2014, 119(12):7425-7438. doi: 10.1002/2014JD021842 [21] Smith D A, Shao X M, Holden D N, et al.A distinct class of isolated intracloud lightning discharges and their associated radio emissions.J Geophys Res Atmos, 1999, 104(D4):4189-4212. doi: 10.1029/1998JD200045 [22] Smith D A, Heavner M J, Jacobson A R, et al.A method for determining intracloud lightning and ionospheric heights from VLF/LF electric field records.Radio Science, 2004, 39(1):1-11. doi: 10.1029/2002RS002790/references [23] Wu T, Dong W, Zhang Y, et al.Discharge height of lightning narrow bipolar events.Journal of Geophysical Research:Atmospheres, 2012, 117(D5):214-221. doi: 10.1029/2011JD017054/pdf [24] Rison W, Krehbiel P R, Stock M G, et al.Observations of narrow bipolar events reveal how lightning is initiated in thunderstorms.Nature Communications, 2016, 7:10721. doi: 10.1038/ncomms10721 [25] Silva C L, Pasko V P.Physical mechanism of initial breakdown pulses and narrow bipolar events in lightning discharges.Journal of Geophysical Research:Atmospheres, 2015, 120(10):4989-5009. doi: 10.1002/2015JD023209 [26] 张阳, 张义军, 吕伟涛. 闪电电场变化信号测量系统及方法. CN ZL 201210143572. 6. 2014. [27] Le V, David M.Sources of the strongest RF radiation from lightning.Journal of Geophysical Research:Oceans, 1979, 85(C7):4091-4095. doi: 10.1029/JC085iC07p04091 [28] Holden D N, Munson C P, Devenport J C.Satellite observations of transionospheric pulse pairs.Geophys Res Lett, 2013, 22(8):889-892. doi: 10.1029/95GL00432/abstract [29] Massey R S, Holden D N, Shao X M.Phenomenology of transionospheric pulse pairs:Further observations.Radio Science, 2016, 33(6):1755-1761. doi: 10.1029/98RS02031/abstract [30] Wu H.Origin of trans-ionospheric pulse pairs.Geophys Res Lett, 2017, 44(5):2597-2603. doi: 10.1002/2017gl072741 [31] 刘恒毅, 董万胜, 王涛, 等.闪电电场变化波形时域特征分析及放电类型识别.气象, 2009, 35(3):49-59. doi: 10.7519/j.issn.1000-0526.2009.03.007 [32] Jacobson A R.How do the strongest radio pulses from thunderstorms relate to lightning flashes.Journal of Geophysical Research:Atmospheres, 2003, 108(D24):4778. doi: 10.1002/2017gl072741 [33] Willett J C, Bailey J C, Krider E P.A class of unusual lightning electric field waveforms with very strong high-frequency radiation.Journal of Geophysical Research:Atmospheres, 1989, 941(D13):16255-16267. doi: 10.1029/JD094iD13p16255/full [34] 吴亭, 董万胜, 刘恒毅.双极性窄脉冲电场波形特征.高原气象, 2011, 30(3):823-830. http://www.cqvip.com/QK/91655X/201103/38332204.html [35] Wu B, Zhang G, Wen J, et al.Correlation analysis between initial preliminary breakdown process, the characteristic of radiation pulse, and the charge structure on the Qinghai-Tibetan Plateau.J Geophys Res, 2016, 121(20):12434-12459. [36] 刘恒毅, 董万胜, 徐良韬, 等.闪电起始过程时空特征的宽带干涉仪三维观测.应用气象学报, 2016, 27(1):16-24. doi: 10.11898/1001-7313.20160102 [37] 张志孝, 郑栋, 张义军, 等.闪电初始阶段和尺度判别方法及其特征.应用气象学报, 2017, 28(4):414-426. doi: 10.11898/1001-7313.20170403