留言板

尊敬的读者、作者、审稿人, 关于本刊的投稿、审稿、编辑和出版的任何问题, 您可以本页添加留言。我们将尽快给您答复。谢谢您的支持!

姓名
邮箱
手机号码
标题
留言内容
验证码

城市效应对登陆热带气旋妮妲降水影响的模拟

杨挺 端义宏 徐晶 冯佳宁

杨挺, 端义宏, 徐晶, 等. 城市效应对登陆热带气旋妮妲降水影响的模拟. 应用气象学报, 2018, 29(4): 410-422. DOI: 10.11898/1001-7313.20180403..
引用本文: 杨挺, 端义宏, 徐晶, 等. 城市效应对登陆热带气旋妮妲降水影响的模拟. 应用气象学报, 2018, 29(4): 410-422. DOI: 10.11898/1001-7313.20180403.
Yang Ting, Duan Yihong, Xu Jing, et al. Simulation of the urbanization impact on precipitation of landfalling tropical cyclone Nida(2016). J Appl Meteor Sci, 2018, 29(4): 410-422. DOI:  10.11898/1001-7313.20180403.
Citation: Yang Ting, Duan Yihong, Xu Jing, et al. Simulation of the urbanization impact on precipitation of landfalling tropical cyclone Nida(2016). J Appl Meteor Sci, 2018, 29(4): 410-422. DOI:  10.11898/1001-7313.20180403.

城市效应对登陆热带气旋妮妲降水影响的模拟

DOI: 10.11898/1001-7313.20180403
资助项目: 

国家重点基础研究发展计划 2015CB452800

中国气象科学研究院基本科研业务费专项 2016Z003

详细信息
    通信作者:

    徐晶, 邮箱: xujing@cma.gov.cn

Simulation of the Urbanization Impact on Precipitation of Landfalling Tropical Cyclone Nida(2016)

  • 摘要: 运用中尺度数值模式WRF耦合城市冠层模式(urban canopy model,UCM),对2016年登陆深圳的热带气旋妮妲(1604)(以下简称妮妲)进行数值模拟。高分辨率数值模拟较好地再现了妮妲登陆前后的强度、路径和累积降水。利用城市化过程当中城市冠层对热带气旋降水的敏感性试验结果表明:城市冠层会减弱对流运动和水汽的输送,导致热带气旋登陆后珠江口城市群区域累积降水量略减少。应用最新的土地利用资料进行的城市下垫面敏感性试验结果表明:由于城市下垫面粗糙度增加,造成登陆地面风的减速,强度减弱,潜热通量与2 m高度比湿相应减小;城市下垫面粗糙度增加会加强该区域垂直对流运动以及不稳定能量增加,有利于降水增强,尤其在城市化下垫面处,热带气旋登陆后6 h累积降水增加量最大可超过20 mm。总体而言,对登陆热带气旋降水而言,耦合城市冠层使城市区域热带气旋降水减少,但在数值模拟中城市冠层影响作用不显著。城市化下垫面对登陆热带气旋暴雨的增幅作用明显,在登陆热带气旋降水预报中应重视。
  • 图  1  模拟试验网格区域设置

    Fig. 1  Domain configuration of simulations

    图  2  珠江口地区下垫面的土地利用类型图(红框是珠三角城市区域) (a)新土地利用资料(WESTDC, 2013), (b)旧土地利用资料(USGS, 1992)

    Fig. 2  The land use for new land use data(WESTDC in 2013)(a) and old land use data(USGS in 1992)(b) (the urban region of Pearl River Delta is shown in red frame)

    图  3  2016年8月1日00:00—2日18:00热带气旋妮妲路径及强度随时间演变(a)模式模拟路径与最佳路径,(b)近中心最大风速

    Fig. 3  Storm tracks from simulations and the best track(a) and maximum wind speed(b) of tropical cyclone Nida(2016) from 0000 UTC 1 Aug to 1800 UTC 2 Aug in 2016

    图  4  2018年8月1日00:00—2日18:00模式模拟路径与最佳路径误差(a)及强度误差(b)

    Fig. 4  Track errors(a) and intensity errors(b) in simulations of tropical cyclone Nida(2016) from 0000 UTC 1 Aug to 1800 UTC 2 Aug in 2016

    图  5  热带气旋妮妲登陆后6 h累积降水量分布(a)CMORPH资料(2016年8月1日18:00—2日00:00),(b)试验UB 2016年8月1日22:00—2日04:00累积降水量及降水时段终止时刻10 m高度风场

    Fig. 5  6 h accumulated precipitation from 1800 UTC 1 Aug to 0000 UTC 2 Aug in 2016 from CMORPH observations(unit:mm)(a), 6 h accumulated precipitation from 2200 UTC 1 Aug to 0400 UTC 2 Aug in 2016 from test UB simulated experiment superposed on 10 m wind vector at the end moment of precipitation period(b)

    图  6  2016年8月1日22:00—2日04:00各组试验模拟得到的累积降水量和降水量差值(红框是珠三角城市区域) (a)试验UB, (b)试验NUC, (c)试验NUB, (d)试验UB与试验NUC差值, (e)试验NUC与试验NUB差值, (f)试验UB与试验NUB差值

    Fig. 6  6 h accumulated precipitation and difference from 2200 UTC 1 Aug to 0400 UTC 2 Aug in 2016 (the urban region of Pearl River Delta is shown in red frame) (a)test UB, (b)test NUC, (c)test NUB, (d)difference between test UB and test NUC, (e)difference between test NUC and test NUB, (f)difference between test UB and test NUB

    图  7  2016年8月1日22:00—2日04:00 3组试验平均10 m风速差值(a)试验UB与试验NUC, (b)试验NUC与试验NUB, (c)试验UB与试验NUB

    Fig. 7  Difference distribution for test UB and test NUC(a), test NUC and test NUB(b), test UB and test NUB(c) of 10 m wind speed for the precipitation period from 2200 UTC 1 Aug to 0400 UTC 2 Aug in 2016

    图  8  3组试验平均散度差随时间演变

    Fig. 8  Time series of averaged divergence difference from 3 tests

    图  9  3组试验城区面积平均气象要素的时间序列图(a)地表温度, (b)2 m气温, (c)感热通量, (d)潜热通量, (e)2 m比湿

    Fig. 9  Time series of surface meteorological variables for 3 tests (a)surface temperture, (b)temperature at 2 m, (c)sensible heat, (d)latent heat, (e)specific humidity at 2 m

    图  10  2016年8月1日22:00—2日04:00东北—西南向剖面平均相对湿度(等值线,单位:%)、垂直速度(填色)差值(a)试验UB与试验NUC,(b)试验NUC与试验NUB,(c)试验UB与试验NUB

    Fig. 10  Cross-section of difference of relative humidity (the contour, unit:%) superposed with vertical velocity (the shaded) from 2200 UTC 1 Aug to 0400 UTC 2 in 2016 (a)test UB and test NUC, (b)test NUC and test NUB, (c)test UB and test NUB

    图  11  3组试验对流有效位能时间序列

    Fig. 11  Time series of convective available potential energy from 3 tests

    表  1  模式参数化方案选择

    Table  1  Description of model configuration

    物理过程 参数化方案名称
    积云对流参数化方案 Grell-3[31](仅用于d01和d02区域)
    云微物理方案 Morrison 2-mom[32]
    边界层方案 YSU[33]
    短波辐射方案 RRTMG[34]
    长波辐射方案 RRTMG[34]
    陆面过程方案 Noah[35]
    下载: 导出CSV
  • [1] 钱传海.我国台风业务现状及其关键技术.气象科技进展, 2012, 2(5):36-43. http://www.doc88.com/p-7562829100188.html
    [2] 陈联寿.热带气旋研究和业务预报技术的发展.应用气象学报, 2006, 17(6):672-681. doi:  10.11898/1001-7313.20060605
    [3] 程正泉, 陈联寿, 李英.登陆热带气旋与夏季风相互作用对暴雨的影响.应用气象学报, 2013, 23(6):660-671. http://qikan.camscma.cn/jams/ch/reader/view_abstract.aspx?file_no=20120603&flag=1
    [4] 程正泉, 陈联寿, 刘燕, 等.1960-2003年我国热带气旋降水的时空分布特征.应用气象学报, 2007, 18(4):427-434. doi:  10.11898/1001-7313.20070402
    [5] 钮学新, 董加斌, 杜惠良.华东地区台风降水及影响降水因素的气候分析.应用气象学报, 2005, 16(3):402-407. doi:  10.11898/1001-7313.20050315
    [6] 何宽科, 范其平, 李开奇, 等.舟山地区台风降水Z-R关系研究及其应用.应用气象学报, 2007, 18(4):573-576. doi:  10.11898/1001-7313.20070420
    [7] 张容焱, 徐宗焕, 游立军, 等.福建热带气旋风雨空间分布特征及风险评估.应用气象学报, 2013, 23(6):672-682. http://qikan.camscma.cn/jams/ch/reader/view_abstract.aspx?file_no=20120604&flag=1
    [8] Palumbo A.Rainfall statistical properties in naples.J Applied Meter Sci, 2009, 108(7):207-211. http://cn.bing.com/academic/profile?id=3033d87380a30932646524eab5fda4a4&encoded=0&v=paper_preview&mkt=zh-cn
    [9] 郑祚芳, 张秀丽.北京地区一次局地强降水过程的数值分析.热带气象学报, 2009, 25(4):442-448. http://www.cmsjournal.net/qxxb_cn/ch/reader/create_pdf.aspx?file_no=20100402&year_id=2010&quarter_id=4&falg=1
    [10] 窦晶晶, 王迎春, 苗世光.北京城区近地面比湿和风场时空分布特征.应用气象学报, 2014, 25(5):559-569. doi:  10.11898/1001-7313.20140505
    [11] 扈海波, 轩春怡, 诸立尚.北京地区城市暴雨积涝灾害风险预评估.应用气象学报, 2013, 24(1):99-108. doi:  10.11898/1001-7313.20130110
    [12] Oke T R.The energetic basis of the urban heat island.Quart J Royal Meteor Soc, 1982, 108(4):1-24. http://cn.bing.com/academic/profile?id=d00bfac6bf1403aeedb37f0f5f0561d1&encoded=0&v=paper_preview&mkt=zh-cn
    [13] Horton R E.Thunderstorm-breeding spots.Mon Wea Rev, 1921, 49(4):193. http://cn.bing.com/academic/profile?id=ddfc916111f95a7be42f6bfb30c2bf16&encoded=0&v=paper_preview&mkt=zh-cn
    [14] Vukovich F M.A theoretical study of the St Louis Heat Island:The wind and temperature distribution.J Applied Meteor, 1976, 15(5):417-440. doi:  10.1175/1520-0450(1976)015<0417:ATSOTS>2.0.CO;2
    [15] Vukovich F M.A theoretical study of the St Louis Heat Island:Some parameter variations.J Applied Meteor, 2010, 17(11):1585-1594. http://cn.bing.com/academic/profile?id=92a0897819540e801cee12cfb71e1abe&encoded=0&v=paper_preview&mkt=zh-cn
    [16] Hjelmfelt M R.Numerical simulation of the effects of St Louis on mesoscale boundary-layer airflow and vertical air motion:Simulations of urban vs non-urban effects.J Applied Meteor, 2017, 21(9):1239-1257. http://cn.bing.com/academic/profile?id=08d196337a697b24af2c376d632f7ca5&encoded=0&v=paper_preview&mkt=zh-cn
    [17] 吴风波, 汤剑平.城市化对2008年8月25日上海一次特大暴雨的影响.南京大学学报(自然科学版), 2011, 47(1):71-81. http://www.wanfangdata.com.cn/details/detail.do?_type=perio&id=njdxxb201101010
    [18] Niyogi D, Pyle P, Lei M, et al.Urban modification of thunderstorms:An observational storm climatology and model case study for the Indianapolis urban region.Journal of Applied Meteorology and Climatology, 2011, 50(5):1129-1144. doi:  10.1175/2010JAMC1836.1
    [19] Givati A, Rosenfeld D.Quantifying precipitation suppression due to air pollution.J Applied Meteor, 2004, 43(7):1038-1056. doi:  10.1175/1520-0450(2004)043<1038:QPSDTA>2.0.CO;2
    [20] Guo X, Fu D, Wang J.Mesoscale convective precipitation system modified by urbanization in Beijing City.Atmos Res, 2006, 82(1-2):112-126. doi:  10.1016/j.atmosres.2005.12.007
    [21] Wang Jun.Potential sensitivity of warm season precipitation to urbanization extents:Modeling study in Beijing-Tianjin-Hebei urban agglomeration in China.Journal of Geophysical Research:Atmospheres, 2015, 120(18):9408-9425. doi:  10.1002/2015JD023572
    [22] Valéry M.A physically-based scheme for the urban energy budget in atmospheric models.Boundary-Layer Meteorology, 2000, 94(3):357-397. doi:  10.1023/A:1002463829265
    [23] Kusaka H.Coupling a single-layer urban canopy model with a simple atmospheric model:Impact on urban heat island simulation for an idealized case.J Meteor Soc Japan, 2004, 82(1):67-80. doi:  10.2151/jmsj.82.67
    [24] Hiroyuki K, Hiroaki K, Yokihiro K, et al.A simple single-layer urban canopy model for atmospheric models:Comparison with multi-layer and slab models.Boundary-Layer Meteorology, 2001, 101(3):329-358. doi:  10.1023/A:1019207923078
    [25] Lee S H, Kim S W, Angevine W M, et al.Evaluation of urban surface parameterizations in the WRF model using measurements during the Texas Air Quality Study 2006 field campaign.Atmospheric Chemistry and Physics, 2011, 11(5):2127-2143. doi:  10.5194/acp-11-2127-2011
    [26] 蒙伟光, 张艳霞, 李江南, 等.WRF/UCM在广州高温天气及城市热岛模拟研究中的应用.热带气象学报, 2010, 26(3):273-282. https://www.wenkuxiazai.com/doc/4f9afdd6941ea76e58fa0494.html
    [27] Miao Shiguang.An observational and modeling study of characteristics of urban heat island and boundary layer structures in Beijing.Journal of Applied Meteorology and Climatology, 2009, 48(3):484-501. doi:  10.1175/2008JAMC1909.1
    [28] Miao Shiguang.Impacts of urban processes and urbanization on summer precipitation:A case study of heavy rainfall in Beijing on 1 August 2006.Journal of Applied Meteorology and Climatology, 2011, 50(4):806-825. doi:  10.1175/2010JAMC2513.1
    [29] Zhong Wei.Review of recent studies of the climatic effects of urbanization in China.Advances in Climate Change Research, 2016, 7(3):154-168. doi:  10.1016/j.accre.2016.09.003
    [30] 冉有华, 李新, 卢玲.基于源数据融合方法的中国1 km土地覆盖分类制图.地球科学进展, 2009, 24(2):192-203. doi:  10.3724/SP.J.1047.2015.01323
    [31] Grell G A, Dévényi D.A generalized approach to parameterizing convection combining ensemble and data assimilation techniques.Geophys Res Lett, 2002, 29(14):38-41. http://adsabs.harvard.edu/abs/2002GeoRL..29.1693G
    [32] Morrison H, Thompson G, Tatarskii V.Impact of cloud microphysics on the development of trailing stratiform precipitation in a simulated squall line:Comparison of one-and two-moment schemes.Mon Wea Rev, 2009, 137(3):991-1007. doi:  10.1175/2008MWR2556.1
    [33] Hong S Y.A new vertical diffusion package with an explicit treatment of entrainment processes.Mon Wea Rev, 2006, 134(9):2318. doi:  10.1175/MWR3199.1
    [34] Iacono M J, Delamere J S, Mlawer E J, et al.Radiative forcing by long-lived greenhouse gases:Calculations with the AER radiative transfer models.Journal of Geophysical Research:Atmospheres, 2008, 113(D13):103-111. http://cn.bing.com/academic/profile?id=106007d5496799b6c90bf942bcc44a18&encoded=0&v=paper_preview&mkt=zh-cn
    [35] Ek M B, Mitchell K E, Lin Y, et al.Implementation of Noah land surface model advances in the National Centers for environmental prediction operational mesoscale Eta model.Journal of Geophysical Research:Atmospheres, 2003, 108(D22):8851-8867. doi:  10.1029/2002JD003296
    [36] Shi X, Wang Y, Xu X.Effect of mesoscale topography over the Tibetan Plateau on summer precipitation in China:A regional model study.Geophys Res Lett, 2008, 35(19):1-5. http://cn.bing.com/academic/profile?id=c2ab3420883459f917da077d4e1cb43a&encoded=0&v=paper_preview&mkt=zh-cn
    [37] 朱桦, 智协飞, 俞永庆.消除偏差集合平均在黄海渤海大风预报中的应用.安徽农业科学, 2011, 39(6):3547-3550. http://www.wanfangdata.com.cn/details/detail.do?_type=perio&id=ahnykx201106145
    [38] 王鹏飞, 毕淑婷.集合平均方法减小混沌系统计算误差的效果研究.气候与环境研究, 2016, 21(5):557-566. https://www.researchgate.net/profile/Peitao_Wang2/publication/271386215_research_and_applications_on_multi-model_ensemble_numerical_typhoon_surge_forecast_technology/links/54c6b67f0cf289f0cecbf048.pdf?origin=publication_detail
    [39] 陈联寿.西太平洋台风概论.北京:科学出版社, 1979.
    [40] Freitas E D, Rozoff C M, Cotton W R, et al.Interactions of an urban heat island and sea-breeze circulations during winter over the metropolitan area of São Paulo, Brazil.Bound Layer Meteor, 2007, 122(1):43-65. doi:  10.1007/s10546-006-9091-3
    [41] 宋静, 汤剑平, 孙鉴泞.南京地区城市冠层效应的模拟试验研究.南京大学学报(自然科学), 2009, 45(6):779-789. http://www.cnki.com.cn/Article/CJFDTOTAL-QHYH200806012.htm
    [42] 肖丹, 陈静, 陈章, 等.成都精细下垫面信息对城市气象影响的模拟试验.气象, 2011, 37(3):298-308. doi:  10.7519/j.issn.1000-0526.2011.03.007
    [43] Changnon S A.Rainfall changes in summer caused by St Louis.Science, 1979, 205:402-404. doi:  10.1126/science.205.4404.402
    [44] Changnon S A, Shealy R T, Scott R W.Precipitation changes in fall, winter, and spring caused by St Louis.J Applied Meteor, 1991, 30(1):126-134. doi:  10.1175/1520-0450(1991)030<0126:PCIFWA>2.0.CO;2
    [45] Shepherd J M, Pierce H, Negri A J.Rainfall modification by major urban areas:Observations from spaceborne rain radar on the TRMM satellite.J Applied Meteor, 2002, 41(7):689-701. doi:  10.1175/1520-0450(2002)041<0689:RMBMUA>2.0.CO;2
    [46] Shepherd J M.Evidence of urban-induced precipitation variability in arid climate regimes.Journal of Arid Environments, 2006, 67(4):607-628. doi:  10.1016/j.jaridenv.2006.03.022
    [47] 郑亦佳, 刘树华, 何萍, 等.城市化对昆明一次强降水过程影响的数值模拟研究.北京大学学报(自然科学版), 2017, 53(4):627-638. http://www.cqvip.com/QK/95348X/201303/45118223.html
    [48] Rabin R M, Stensrud D J, Stadler S, et al.Observed effects of landscape variability on convective clouds.Bull Amer Meteor Soc, 1990, 71(3):272-280. doi:  10.1175/1520-0477(1990)071<0272:OEOLVO>2.0.CO;2
    [49] Yamada H, Uyeda H.Transition of the rainfall characteristics related to the moistening of the land surface over the central Tibetan Plateau during the summer of 1998.Mon Wea Rev, 2006, 134(11):3230-3247. doi:  10.1175/MWR3235.1
  • 加载中
图(11) / 表(1)
计量
  • 摘要浏览量:  2838
  • HTML全文浏览量:  1373
  • PDF下载量:  276
  • 被引次数: 0
出版历程
  • 收稿日期:  2018-03-05
  • 修回日期:  2018-05-25
  • 刊出日期:  2018-07-31

目录

    /

    返回文章
    返回