Relationships Between Cloud-to-ground Lightning and Radar Parameters at Naqu of the Qinghai-Tibet Plateau
-
摘要: 基于2014—2015年5—9月西藏那曲地区多普勒天气雷达数据,结合地闪观测数据,识别雷暴单体样本,统计分析了地闪位置附近的雷达回波分布特征,并研究了高原雷暴的雷达参量与地闪频次的相关关系。结果表明:那曲地区地闪发生位置附近的雷达最大反射率因子呈正态分布,峰值分布区间集中于34~41 dBZ。发生地闪位置附近的20 dBZ回波顶主要集中于11~15 km高度,30 dBZ回波顶高分布的峰值区间则为8.5~12 km。分析表明:表征局地雷暴对流发展强度的雷达参量与地闪频次之间一对一的相关关系较差,但相关性随地闪频次增加而增强。基于雷达参量分段统计得到的对应分段平均地闪频次与雷达参量之间表现出较强相关关系,体现了宏观上闪电活动强度与雷暴发展强度之间的正向关系。其中,基于原始数值进行区间划分的强回波(组合反射率因子不小于30 dBZ)面积与平均地闪频次的线性相关系数达0.75,基于对数数值区间划分的7~11 km累积可降冰含量的对数值和地闪频次的线性相关系数达0.95。文中对比了多个雷达参量和地闪频次线性拟合与幂函数拟合结果,整体上幂函数拟合略好于线性拟合。Abstract: Lightning observation may play a key role in the monitoring of deep convection over the Qinghai-Tibet Plateau, especially considering that the wide-range and real-time observation ability of lightning location system. It is firstly necessary to understand the relationship between lightning activity and deep convection features, which, has been rarely concerned in the Qinghai-Tibet Plateau. Using radar data and cloud-to-ground (CG) lightning data during May-September from 2014 to 2015, correlations between CG lightning and radar parameters of thunderstorms are investigated over Naqu, a county in the middle of the Plateau with relatively strong lightning activity. Continuous spatial regions of radar composite reflectivity above 20 dBZ are identified as storm cells at each 6 min radar volume scan, and "matching ellipses" are used to enclose the scope of cells, and then whether CG lightning flashes fall in ellipses or cells is decided. Cells with lightning and located within 30-100 km of radar center are picked out as thunderstorms. Based on 5626 thunderstorm samples, it is summarized that the maximum radar echo, 20 dBZ echo top and 30 dBZ within 5 km of CG flash location exhibit normal distribution, with their peak values ranging from 34 to 41 dBZ, 11 to 15 km, and 8.5 to 12 km, respectively. Meanwhile, the maximum vertical integrated liquid content and the maximum precipitation ice content vertically integrated at 7-11 km both show logarithmic normal distribution. A total of 4719 thunderstorms that possess no less than 30 dBZ reflectivity (a threshold value for the definition of strong reflectivity) are selected for the correlation analysis. Weak correlations between CG lightning frequency and radar parameters are found while are considered as one-to-one relationships. However, correlations enhance prominently when the CG lightning frequency in the thunderstorm increases. The correlation study based on interval segmentations of radar parameters is then made and strong relationships are found, indicating the macroscopic correspondences of CG lightning frequency to the intensity of thunderstorms. The area of composite reflectivity no less than 30 dBZ show the most outstanding correlation with CG lightning frequency among radar parameters which are segmented linearly, with the correlation coefficient being 0.75. Among radar parameters that are segmented according to their logarithms, the logarithm of precipitation ice content accumulated at 7-11 km and in the area with composite reflectivity no less than 30 dBZ are most prominently correlated with CG lightning frequency, with the correlation coefficient being 0.95. Formulas based on linear fittings and power function fittings are all given, while the power function fittings are a little better according to their corresponding correlation coefficient.
-
图 2 降水云单体及其匹配椭圆的相对位置示意图
(灰色方块代表降水云单体的格点簇,黑色圆点代表降水云单体和匹配椭圆的质心位置,黑色实线为匹配椭圆的轮廓)
(a)2014年5月4日16:06(北京时,下同)雷达观测,(b)2014年6月20日18:06雷达观测Fig. 2 Schematic diagram of precipitation clouds and their matching ellipses
(space-continuous gray grid boxes represent identified precipitation clouds, black dots represent centroid positions of precipitation clouds and their matching ellipses, and black solid lines are contours of the matching ellipses) (a)radar volume scan at 1606 BT 4 May 2014, (b)radar volume scan at 1806 BT 20 Jun 2014
图 4 基于雷达参量区间分段的雷达参量与平均地闪频次的散点分布和拟合结果
(虚线和实线分别为线性拟合曲线和幂函数拟合曲线,f代表平均地闪频次,单位:(6 min)-1)
Fig. 4 Distributions and correlation fittings of radar parameters and average lightning frequencies based on interval segmentations of radar parameters
(dashed and solid lines are linear fitting curves and exponential fitting curves, respectively; f represents the average cloud-to-ground lightning frequency, unit:(6 min)-1)
图 5 同图 4,但为相关雷达参量取对数后与地闪频次的区间分段拟合
(a)最大垂直积分液态含水量MVIL_max,(b)最大垂直积分可降冰含量MPI_max,(c)强回波(不小于30 dBZ)区域累积液态含水量MVIL,(d)强回波区域累积可降冰含量MPI
Fig. 5 The same as in Fig. 4, but interval segmentations and correlation fittings are based on logarithms of radar parameters
(a)the maximum grid value of vertical integrated liquid water content MVIL_max, (b)the maximum precipitation ice content MPI_max at 7-11 km, (c)the accumulated vertical integrated liquid water content MVIL in areas no less than 30 dBZ, (d)the accumulated vertical integrated precipitation ice content MPI at 7-11 km in areas no less than 30 dBZ
表 1 雷达参量列表
Table 1 Radar echo parameters
参量名 参量描述 A 强回波面积* HET 30 dBZ回波顶高 V0 0℃层以上强回波体积** V10 -10℃层以上强回波体积** Rmax 最大雷达反射率因子 MVIL_max 最大垂直累积液态水含量(格点数值) MPI_max 最大7~11 km可降冰垂直积分含量(格点数值) MVIL 垂直累积液态水含量*** MPI 7~11 km累积可降冰含量*** Rs0 0℃层以上所有强回波反射率因子之和 Rs10 -10℃层以上所有强回波反射率因子之和 注:*表示强回波均以组合反射率因子30 dBZ为阈值;**表示0℃层和-10℃层高度为研究时间段内的平均海拔高度,分别为5.9 km和7.2 km;***表示累积值均基于强回波范围计算,即组合反射率因子不小于30 dBZ的范围。 表 2 地闪频次与雷达参量的相关系数
Table 2 Correlation coefficients between cloud-to-ground flash frequency and radar parameters
参量 所有雷暴
(样本量:4719)发生2次及以上地闪的雷暴
(样本量:1724)发生5次及以上地闪的雷暴
(样本量:267)A 0.38 0.39 0.50 HET 0.20 0.18 0.24 V0 0.33 0.34 0.47 V10 0.29 0.30 0.43 Rmax 0.24 0.25 0.38 MVIL_max 0.24 0.26 0.42 MPI_max 0.25 0.29 0.43 MVIL 0.34 0.36 0.48 MPI 0.32 0.34 0.46 Rs0 0.32 0.34 0.47 Rs10 0.29 0.30 0.43 注:表中数据为四舍五入后保留两位小数的相关系数,所有相关系数均达到0.001显著性水平。 -
[1] 徐祥德, 陈联寿.青藏高原大气科学试验研究进展.应用气象学报, 2006, 17(6):756-772. doi: 10.3969/j.issn.1001-7313.2006.06.013 [2] 傅云飞, 潘晓, 刘国胜, 等.基于云亮温和降水回波顶高度分类的夏季青藏高原降水研究.大气科学, 2016, 40(1):102-120. http://d.old.wanfangdata.com.cn/Periodical/daqikx201601009 [3] 徐祥德, 周明煜, 陈家宜, 等.青藏高原地-气过程动力、热力结构综合物理图像.中国科学(地球科学), 2001, 31(5):428-441. http://www.wanfangdata.com.cn/details/detail.do?_type=perio&id=HY000001920910 [4] 张庆云, 金祖辉, 彭京备.青藏高原对流时空变化与东亚环流的关系.大气科学, 2006, 30(5):802-812. doi: 10.3878/j.issn.1006-9895.2006.05.09 [5] 齐鹏程, 郑栋, 张义军, 等.青藏高原闪电和降水气候特征及时空对应关系.应用气象学报, 2016, 27(4):488-497. http://qikan.camscma.cn/jams/ch/reader/view_abstract.aspx?file_no=20160412&flag=1 [6] 郄秀书, 袁铁, 谢毅然, 等.青藏高原闪电活动的时空分布特征.地球物理学报, 2004, 47(6):997-1002. doi: 10.3321/j.issn:0001-5733.2004.06.010 [7] 张义军, 孟青, 马明, 等.闪电探测技术发展和资料应用.应用气象学报, 2006, 17(5):611-620. doi: 10.3969/j.issn.1001-7313.2006.05.011 [8] 周康辉, 郑永光, 蓝渝. 基于闪电数据的雷暴识别、追踪与外推方法. 2016, 27(2): 173-181. [9] Laksen H R, Stansbury E J.Association of lightning flashes with precipitation cores extending to height 7 km. J Atmos Terres Phys, 1974, 36(9):1547-1553. doi: 10.1016/0021-9169(74)90232-3 [10] Marshall J S, Radhakant S.Radar precipitation maps as lightning indicators. J Appl Meteoro, 1978, 17(2):206-212. doi: 10.1175/1520-0450(1978)017<0206:RPMALI>2.0.CO;2 [11] 石玉恒, 张义军, 郑栋, 等.北京地区雷暴的雷达回波特征与闪电活动的相关关系.气象, 2012, 38(1):66-71. http://www.wanfangdata.com.cn/details/detail.do?_type=perio&id=QK201200024296 [12] 郑栋.闪电活动与降水的相关关系研究.北京:中国科学院研究生院, 2008. [13] Xu W, Zipser E J, Liu C.Rainfall characteristics and convective properties of Mei-yu precipitation systems over South China, Taiwan, and the South China Sea.Part Ⅰ:TRMM Observations. Mon Wea Rev, 2009, 137(12):4261-4275. doi: 10.1175/2009MWR2982.1 [14] Zipser E J, Lutz K R.The vertical profile of radar reflectivity of convective cells:A strong indicator of storm intensity and lightning probability? Mon Wea Rev, 1994, 122(8):1751-1759. doi: 10.1175/1520-0493(1994)122<1751:TVPORR>2.0.CO;2 [15] 袁铁, 郄秀书.中国东部及邻近海域暖季降水系统的闪电、雷达反射率和微波特征.气象学报, 2010, 68(5):652-665. http://d.old.wanfangdata.com.cn/Periodical/qxxb201005007 [16] Petersen W A, Christian H J, Rutledge S A.TRMM observations of the global relationship between ice water content and lightning. Geophys Res Lett, 2005, 32(14):2471-2494. http://www.wanfangdata.com.cn/details/detail.do?_type=perio&id=JJ024166935 [17] Gauthier M L, Petersen W A, Carey L D, et al. Relationship between cloud-to-ground lightning and precipitation ice mass:A Radar study over Houston. Geophys Res Lett, 2006, 33(20):672-674. http://d.old.wanfangdata.com.cn/NSTLQK/NSTL_QKJJ0210340789/ [18] Deierling W, Latham J, Petersen W A, et al.On the relationship of thunderstorm ice hydrometeor characteristics and total lightning measurements. Atmos Res, 2005, 76(1-4):114-126. doi: 10.1016/j.atmosres.2004.11.023 [19] Zheng D, Meng Q, Zhang Y, et al.Correlation between total lightning activity and precipitation particle characteristics observed from 34 thunderstorms. Acta Meteor Sinica, 2010, 24(6):776-788. http://d.old.wanfangdata.com.cn/Periodical/qxxb-e201006011 [20] 袁铁, 郄秀书.基于TRMM卫星对一次华南飑线的闪电活动及其与降水结构的关系研究.大气科学, 2010, 34(1):58-70. http://d.old.wanfangdata.com.cn/Periodical/daqikx201001006 [21] Wang C, Zheng D, Zhang Y, et al.Relationship between lightning activity and vertical airflow characteristics in thunderstorms. Atmos Res, 2017, 191:12-19. doi: 10.1016/j.atmosres.2017.03.003 [22] 郑栋, 张义军, 孟青, 等.北京地区雷暴过程闪电与地面降水的相关关系.应用气象学报, 2010, 21(3):287-297. doi: 10.3969/j.issn.1001-7313.2010.03.004 [23] 王婷波, 郑栋, 张义军, 等.基于大气层结和雷暴演变的闪电和降水关系.应用气象学报, 2014, 25(1):33-41. http://qikan.camscma.cn/jams/ch/reader/view_abstract.aspx?file_no=20140104&flag=1 [24] 王婷波, 郑栋, 周康辉, 等.暴雨和雹暴个例中闪电特征对比.应用气象学报, 2017, 28(5):568-578. http://qikan.camscma.cn/jams/ch/reader/view_abstract.aspx?file_no=20170505&flag=1 [25] Fan P, Zheng D, Zhang Y, et al.A performance evaluation of the World Wide Lightning Location Network (WWLLN) over the Tibetan Plateau. J Atmos Oceanic Technol, 2018, 35(4):927-939. doi: 10.1175/JTECH-D-17-0144.1 [26] Chen M, Wang Y, Gao F, et al.Diurnal variations in convective storm activity over contiguous North China during the warm season based on radar mosaic climatology. J Geophys Res:Atmos, 2012, 117(D20), DOI: 10.1029/2012JD018158. [27] Cummins K L, Murphy M J, Bardo E A, et al.A combined TOA/MDF technology upgrade of the U.S. National Lightning Detection Network. J Geophys Res, 1998, 103(D8):9035-9044. doi: 10.1029/98JD00153 [28] Zheng D, Zhang Y, Meng Q, et al.Climatological comparison of small- and large-current cloud-to-ground lightning flashes over Southern China. J Climate, 2016, 29(8):2831-2848. doi: 10.1175/JCLI-D-15-0386.1 [29] 王红艳, 刘黎平, 王改利, 等.多普勒天气雷达三维数字组网系统开发及应用.应用气象学报, 2009, 20(2):214-224. doi: 10.3969/j.issn.1001-7313.2009.02.011 [30] 肖艳姣, 刘黎平.新一代天气雷达网资料的三维格点化及拼图方法研究.气象学报, 2006, 64(5):647-657. doi: 10.3321/j.issn:0577-6619.2006.05.011 [31] Carey L D, Rutledge S A.The relationship between precipitation and lightning in tropical island convection:A C-band polarimetric radar study. Mon Wea Rev, 2000, 128(81):2687-2710. doi: 10.1175-1520-0493(2000)128-2687-TRBPAL-2.0.CO%3b2/ [32] 韩雷, 俞小鼎, 郑永光, 等.京津及邻近地区暖季强对流风暴的气候分布特征.科学通报, 2009, 54(11):1585-1590. http://d.old.wanfangdata.com.cn/Conference/7015654 [33] Qie X, Wu X, Yuan T, et al.Comprehensive pattern of deep convective systems over the Tibetan Plateau-South Asian Monsoon Region based on TRMM data. J Climate, 2014, 27(17):6612-6626. doi: 10.1175/JCLI-D-14-00076.1 [34] Xu W.Precipitation and convective characteristics of summer deep convection over East Asia observed by TRMM. Mon Wea Rev, 2013, 141(5):1577-1592. doi: 10.1175/MWR-D-12-00177.1 [35] 张翠华, 言穆弘, 董万胜, 等.青藏高原雷暴天气层结特征分析.高原气象, 2005, 24(5):741-747. doi: 10.3321/j.issn:1000-0534.2005.05.013 [36] MacGorman D R, Burgess D W, Mazur V, et al.Lightning rates relative to tornadic storm evolution on 22 May 1981. J Atmos Sci, 1989, 46(2):221-250. doi: 10.1175/1520-0469(1989)046<0221:LRRTTS>2.0.CO;2 [37] Wang C, Zheng D, Zhang Y, et al.Relationship between lightning activity and vertical airflow characteristics in thunderstorms. Atmos Res, 2016, 191:12-19. http://cn.bing.com/academic/profile?id=d5106f6aa3e934c8a1fc75e8faa1ffdf&encoded=0&v=paper_preview&mkt=zh-cn [38] Tan Y, Tao S, Liang Z, et al.Numerical study on relationship between lightning types and distribution of space charge and electric potential. J Geophys Res:Atmos, 2014, 119:1003-1014. doi: 10.1002/2013JD019983 [39] 王飞, 董万胜, 张义军, 等.云内大粒子对闪电活动影响的个例模拟.应用气象学报, 2009, 20(5):564-570. doi: 10.3969/j.issn.1001-7313.2009.05.007