留言板

尊敬的读者、作者、审稿人, 关于本刊的投稿、审稿、编辑和出版的任何问题, 您可以本页添加留言。我们将尽快给您答复。谢谢您的支持!

姓名
邮箱
手机号码
标题
留言内容
验证码

利用起放电模式开展闪电活动的直接预报试验

徐良韬 陈双 姚雯 谌芸 张荣

徐良韬, 陈双, 姚雯, 等. 利用起放电模式开展闪电活动的直接预报试验. 应用气象学报, 2018, 29(5): 534-545. DOI: 10.11898/1001-7313.20180503..
引用本文: 徐良韬, 陈双, 姚雯, 等. 利用起放电模式开展闪电活动的直接预报试验. 应用气象学报, 2018, 29(5): 534-545. DOI: 10.11898/1001-7313.20180503.
Xu Liangtao, Chen Shuang, Yao Wen, et al. Predicting lightning activities by a meso-scale electrification and discharge model. J Appl Meteor Sci, 2018, 29(5): 534-545. DOI:  10.11898/1001-7313.20180503.
Citation: Xu Liangtao, Chen Shuang, Yao Wen, et al. Predicting lightning activities by a meso-scale electrification and discharge model. J Appl Meteor Sci, 2018, 29(5): 534-545. DOI:  10.11898/1001-7313.20180503.

利用起放电模式开展闪电活动的直接预报试验

DOI: 10.11898/1001-7313.20180503
资助项目: 

中国气象科学研究院基本科研业务费专项资金 2016Y008

国家自然科学基金项目 41605003

中国气象科学研究院基本科研业务费专项资金 2017Z003

国家重点基础研究发展计划 2014CB441406

详细信息
    通信作者:

    徐良韬, 邮箱:xult@cma.gov.cn

Predicting Lightning Activities by a Meso-scale Electrification and Discharge Model

  • 摘要: 利用耦合有起电和放电物理过程的中尺度起电放电模式WRF-Electric,开展了华北地区连续3年(2015—2017年)的闪电活动预报试验。结合全国地闪定位观测资料,针对不同影响范围雷暴类型和预报时间,对数值预报结果开展点对点的定量检验,评估模式对闪电活动的预报能力及特点。结果表明:WRF-Electric中尺度模式具备一定的区域闪电活动预报能力,在起报后的6~12 h对闪电活动区域具有较好的预报效果。雷暴落区预报的点对点定量检验中,模式和业务预报在华北主汛期(6—8月)的预报临界成功指数(CSI)均为0.1,模式对于活动范围较小的局地性雷暴过程的预报更具参考价值。模式预报的闪电活动范围相对集中,闪电活动密度偏高,预报的主要问题存在于放电参数化方案的设计。应当考虑到模式空间分辨率对云内电场强度的影响,合理降低闪电参数化中的放电阈值以扩大预报的闪电活动范围。模式在闪电密度的定量预报上还有较大改进空间,单次放电中和电荷量应当更符合观测事实。
  • 图  1  WRF-Electric模式的架构

    Fig. 1  Schematic illustration of WRF-Electric model

    图  2  两层模拟区域及观测点(黑点)分布

    (填色为地形)

    Fig. 2  Locations of two domains and observation stations(black dot)

    (the shaded denotes terrain)

    图  3  3个个例观测和不同预报时间闪电密度对比

    Fig. 3  Comparison of observed and simulated flash density with different forecast time of 3 cases

    图  4  业务和不同时间预报检验

    Fig. 4  Verification for the operational and numerical prediction with different forecast time

    图  5  不同活动范围雷暴的预报检验

    Fig. 5  Verification for the operational and numerical prediction with different forecast time

    图  6  观测、业务及模式预报的雷暴发生站点数、命中站点数、空报站点数和漏报站点数

    Fig. 6  Observed, operational and numerical prediction total thunderstorm station numbers in all verification cases along with the hit station number, false alarm station number and missing alarm station number

    表  1  模式的基本设置

    Table  1  Model design

    参数 d01 d02
    格点数 124×124 160×160
    格距/km 12 4
    时间步长/s 45 15
    积分时间/h 24 24
    边界层方案 YSU YSU
    微物理方案 Milbrandt双参 Milbrandt双参
    非感应起电方案 TGZ TGZ
    积云方案 Kain-Fritsch
    侧边界条件 嵌套
    长波辐射方案 RRTM RRTM
    短波辐射方案 Dudhia Dudhia
    下载: 导出CSV
  • [1] Zhang W, Meng Q, Ma M, et al.Lightning casualties and damages in China from 1997 to 2009. Nat Hazards, 2011, 57(2):465-476. doi:  10.1007/s11069-010-9628-0
    [2] 郑永光, 周康辉, 盛杰, 等.强对流天气监测预报预警技术进展.应用气象学报, 2015, 26(6):641-657. http://qikan.camscma.cn/jams/ch/reader/view_abstract.aspx?file_no=20150601&flag=1
    [3] 周康辉, 郑永光, 蓝渝.基于闪电数据的雷暴识别、追踪与外推方法.应用气象学报, 2016, 27(2):173-181. http://qikan.camscma.cn/jams/ch/reader/view_abstract.aspx?file_no=20160205&flag=1
    [4] Wang F, Zhang Y, Dong W.A lightning activity forecast scheme developed for summer thunderstorms in South China. J Meteor Res, 2010, 24(5):631-640.
    [5] McCaul E W, Goodman S J, LaCasse K M, et al.Forecasting lightning threat using cloud-resolving model simulations. Wea Forecastin, 2009, 24(3):709-729. doi:  10.1175/2008WAF2222152.1
    [6] 黄蕾, 周筠珺, 谷娟, 等.雷暴中雷电活动与WRF模式微物理和动力模拟量的对比研究.大气科学, 2015, 39(6):1095-1111. http://d.old.wanfangdata.com.cn/Periodical/daqikx201506004
    [7] Burrows W R, Price C, Wilson L J.Warm season lightning probability prediction for Canada and the Northern United States. Wea Forecasting, 2005, 20(6):971-988. doi:  10.1175/WAF895.1
    [8] Rajeevan M, Madhulatha A, Rajasekhar M, et al.Development of a perfect prognosis probabilistic model for prediction of lightning over south-east India. J Earth Syst Sci, 2012, 121(2):355-371. doi:  10.1007/s12040-012-0173-y
    [9] Shafer P E, Fuelberg H E.A perfect prognosis scheme for forecasting warm-season lightning over Florida. Mon Wea Rev, 2008, 136(6):1817-1846. doi:  10.1175/2007MWR2222.1
    [10] Sousa J F, Fragoso M, Mendes S, et al.Statistical-dynamical modeling of the cloud-to-ground lightning activity in Portugal. Atmos Res, 2013, 132-133:46-64. doi:  10.1016/j.atmosres.2013.04.010
    [11] Zepka G S, Pinto O, Saraiva A C V.Lightning forecasting in southeastern Brazil using the WRF model. Atmos Res, 2014, 135-136:344-362. doi:  10.1016/j.atmosres.2013.01.008
    [12] Lynn B, Yair Y.Prediction of lightning flash density with the WRF model. Adv Geosci, 2010, 23:11-16. doi:  10.5194/adgeo-23-11-2010
    [13] Wong J, Barth M C, Noone D.Evaluating a lightning parameterization based on cloud-top height for mesoscale numerical model simulations. Geosci Model Dev, 2013, 6(2):429-443. doi:  10.5194/gmd-6-429-2013
    [14] Yair Y, Lynn B, Price C, et al.Predicting the potential for lightning activity in Mediterranean storms based on the Weather Research and Forecasting (WRF) model dynamic and microphysical fields. J Geophys Res, 2010, 115(D4):D04205.
    [15] Bright D R, Wandishin M S, Jewell R E, et al. A Physically Based Parameter for Lightning Prediction and Its Calibration in Ensemble Forecasts//Conference on Meteorological Applications of Lightning Data. Amer Meteor Soc, 2005.
    [16] Sturtevant J S. The Severe Local Storm Forecasting Primer//Weather Scratch Meteor Serv. 1995.
    [17] Lynn B H, Yair Y, Price C, et al.Predicting cloud-to-ground and Intracloud lightning in weather forecast models. Wea Forecasting, 2012, 27(6):1470-1488. doi:  10.1175/WAF-D-11-00144.1
    [18] 徐良韬, 张义军, 王飞, 等. 利用WRF模式进行闪电活动的直接预报//第30届中国气象学会年会. 2013.
    [19] 黄丽萍, 陈德辉, 管兆勇, 等.基于高分辨率中尺度气象模式的实际雷暴过程的数值模拟试验.大气科学, 2008, 32(6):1341-1351. doi:  10.3878/j.issn.1006-9895.2008.06.09
    [20] Liu D, Qie X, Peng L, et al.Charge structure of a summer thunderstorm in North China:Simulation using a Regional Atmospheric Model System. Adv Atmos Sci, 2014, 31(5):1022-1034. doi:  10.1007/s00376-014-3078-7
    [21] 王飞.GRAPES中尺度模式对闪电活动的数值模拟研究.北京:中国科学院研究生院, 2010.
    [22] 徐良韬, 张义军, 王飞, 等.雷暴起电和放电物理过程在WRF模式中的耦合及初步检验.大气科学, 2012, 36(5):1041-1052. http://d.old.wanfangdata.com.cn/Periodical/daqikx201205014
    [23] Fierro A O, Mansell E R, MacGorman D R, et al.The implementation of an explicit charging and discharge lightning scheme within the WRF-ARW model:Benchmark simulations of a continental squall line, a tropical cyclone, and a winter storm. Mon Wea Rev, 2013, 141(7):2390-2415. doi:  10.1175/MWR-D-12-00278.1
    [24] Wang H, Liu Y, Cheng W Y, et al.Improving lightning and precipitation prediction of severe convection using lightning data assimilation with NCAR WRF-RTFDDA. J Geophys Res, 2017, 122, https://doi.org/10.1002/2017JD027340.
    [25] Li W, Qie X, Fu S, et al.Simulation of quasi-linear mesoscale convective systems in northern China:Lightning activities and storm structure. Adv Atmos Sci, 2016, 33(1):85-100. doi:  10.1007/s00376-015-4170-3
    [26] Xu L, Zhang Y, Wang F, et al.Simulation of the electrification of a tropical cyclone using the WRF-ARW model:An idealized case. J Meteor Res, 2014, 28(3):453-468. doi:  10.1007/s13351-014-3079-6
    [27] Skamarock W C, Klemp J B, Dudhia J, et al. A Description of the Advanced Research WRF Version 3. 2008.
    [28] Gardiner B, Lamb D, Pitter R L, et al.Measurements of initial potential gradient and particle charges in a Montana summer thunderstorm. J Geophys Res, 1985, 90(D4):6079-6086. doi:  10.1029/JD090iD04p06079
    [29] Ziegler C L, MacGorman D R, Dye J E, et al.A model evaluation of noninductive graupel-ice charging in the early electrification of a mountain thunderstorm. J Geophys Res, 1991, 96(D7):12833-12855. doi:  10.1029/91JD01246
    [30] 谭涌波.闪电放电与雷暴云电荷、电位分布相互关系的数值模拟.合肥:中国科学技术大学, 2006.
    [31] Tan Y, Tao S, Liang Z, et al.Numerical study on relationship between lightning types and distribution of space charge and electric potential. J Geophys Res, 2014, 119(2):2013JD019983. http://www.wanfangdata.com.cn/details/detail.do?_type=perio&id=JJ0233617202
    [32] Brooks I M, Saunders C P R, Mitzeva R P, et al.The effect on thunderstorm charging of the rate of rime accretion by graupel. Atmos Res, 1997, 43(3):277-295. doi:  10.1016/S0169-8095(96)00043-9
    [33] Saunders C P R, Keith W D, Mitzeva R P.The effect of liquid water on thunderstorm charging. J Geophys Res, 1991, 96(D6):11007-11017. doi:  10.1029/91JD00970
    [34] Saunders C P R, Peck S L.Laboratory studies of the influence of the rime accretion rate on charge transfer during crystal/graupel collisions. J Geophys Res, 1998, 103(D12):13949-13956. doi:  10.1029/97JD02644
    [35] Milbrandt J A, Yau M K.A multimoment bulk microphysics parameterization.Part Ⅰ:Analysis of the role of the spectral shape parameter. J Atmos Sci, 2005, 62(9):3051-3064. doi:  10.1175/JAS3534.1
    [36] Milbrandt J A, Yau M K.A multimoment bulk microphysics parameterization.Part Ⅱ:A proposed three-moment closure and scheme description. J Atmos Sci, 2005, 62(9):3065-3081. doi:  10.1175/JAS3535.1
    [37] Mlawer E J, Taubman S J, Brown P D, et al.Radiative transfer for inhomogeneous atmospheres:RRTM, a validated correlated-k model for the longwave. J Geophys Res, 1997, 102(D14):16663-16682. doi:  10.1029/97JD00237
    [38] Dudhia J.Numerical study of convection observed during the winter monsoon experiment using a mesoscale two-dimensional model. J Atmos Sci, 1989, 46(20):3077-3107. doi:  10.1175/1520-0469(1989)046<3077:NSOCOD>2.0.CO;2
    [39] Kain J S.The Kain-Fritsch convective parameterization:An update. J Appl Meteor, 2004, 43(1):170-181. doi:  10.1175/1520-0450(2004)043<0170:TKCPAU>2.0.CO;2
    [40] Hong S-Y, Noh Y, Dudhia J.A new vertical diffusion package with an explicit treatment of entrainment processes. Mon Wea Rev, 2006, 134(9):2318-2341. doi:  10.1175/MWR3199.1
    [41] Yao W, Zhang Y, Meng Q, et al.A comparison of the characteristics of total and cloud-to-ground lightning activities in hailstorms. Acta Meteor Sinica, 2013, 27(2):282-293. doi:  10.1007/s13351-013-0212-x
    [42] Shafer P E, Fuelberg H E.A perfect prognosis scheme for forecasting warm-season lightning over Florida. Mon Wea Rev, 2008, 136(6):1817-1846. doi:  10.1175/2007MWR2222.1
    [43] 唐文苑, 周庆亮, 刘鑫华, 等.国家级强对流天气分类预报检验分析.气象, 2017, 43(1):63-76. doi:  10.3969/j.issn.1006-009X.2017.01.015
    [44] Wu F, Cui X, Zhang D-L, et al.SAFIR-3000 lightning statistics over the Beijing metropolitan region during 2005-07. J Appl Meteor Climatol, 2016, 55(12):2613-2633. doi:  10.1175/JAMC-D-16-0030.1
    [45] 田付友, 郑永光, 张涛, 等.短时强降水诊断物理量敏感性的点对面检验, 应用气象学报, 2015, 26(4):385-396. http://qikan.camscma.cn/jams/ch/reader/view_abstract.aspx?file_no=20150401&flag=1
    [46] 毕宝贵, 代刊, 王毅, 等.定量降水预报技术进展.应用气象学报, 2016, 27(5):534-549. http://qikan.camscma.cn/jams/ch/reader/view_abstract.aspx?file_no=20160503&flag=1
    [47] Qie X.Progresses in the atmospheric electricity researches in China during 2006-2010. Adv Atmos Sci, 2012, 29(5):993-1005. doi:  10.1007/s00376-011-1195-0
    [48] 张义军, 徐良韬, 郑栋, 等.强风暴中反极性电荷结构研究进展.应用气象学报, 2014, 25(5):513-526. http://qikan.camscma.cn/jams/ch/reader/view_abstract.aspx?file_no=20140501&flag=1
    [49] 林辉, 谭涌波, 马宇翔, 等.雷暴云内电荷水平分布形式对闪电放电的影响.应用气象学报, 2018, 29(3):374-384. http://qikan.camscma.cn/jams/ch/reader/view_abstract.aspx?file_no=20180311&flag=1
    [50] Krehbiel P R, Riousset J A, Pasko V P, et al.Upward electrical discharges from thunderstorms. Nature Geosci, 2008, 1(4):233-237. doi:  10.1038/ngeo162
    [51] 刘恒毅, 董万胜, 徐良韬, 等.闪电起始过程时空特征的宽带干涉仪三维观测.应用气象学报, 2016, 27(1):16-24. http://qikan.camscma.cn/jams/ch/reader/view_abstract.aspx?file_no=20160102&flag=1
    [52] 张志孝, 郑栋, 张义军, 等.闪电初始阶段和尺度判别方法及其特征.应用气象学报, 2017, 28(4):414-426. http://qikan.camscma.cn/jams/ch/reader/view_abstract.aspx?file_no=20170403&flag=1
  • 加载中
图(6) / 表(1)
计量
  • 摘要浏览量:  3494
  • HTML全文浏览量:  1575
  • PDF下载量:  148
  • 被引次数: 0
出版历程
  • 收稿日期:  2018-06-03
  • 修回日期:  2018-08-02
  • 刊出日期:  2018-09-30

目录

    /

    返回文章
    返回