The Applicability of Two Statistical Downscaling Methods to the Qinling Mountains
-
摘要: 基于ASD(automated statistical downscaling)统计降尺度模型提供的多元线性回归和岭回归两种统计降尺度方法,采用RCP4.5(representative concentration pathways 4.5)和RCP8.5情景下全球气候模式MPI-ESM-LR输出的预报因子数据、NCEP/NCAR再分析数据和秦岭山地周边10个气象站观测数据,评估两种统计降尺度方法在秦岭山地的适用性及预估秦岭山地未来3个时期(2006-2040年、2041-2070年和2071-2100年)的平均气温和降水。结果表明:率定期和验证期内,两种统计降尺度方法均可以较好地模拟研究区域的平均气温和降水的变化特征,且多元线性回归的模拟效果优于岭回归。在未来气候情景下,两种统计降尺度方法预估的研究区域平均气温均呈明显上升趋势,气温增幅随辐射强迫增加而增大。降水方面,21世纪未来3个时期降水均呈不明显减少趋势,但季节分配发生变化。综合考虑两种统计降尺度方法在秦岭山地对平均气温和降水的模拟效果和情景预估结果,认为多元线性回归降尺度方法更适用于秦岭山地气候变化的降尺度预估研究。Abstract: The Qinling Mountains is not only the dividing line of northern China and southern China, but also the dividing line between monsoon climate of medium latitudes and subtropical monsoon climate in China, i.e., the dividing line between China's warm temperate and subtropical regions. It also has abundant natural resources because of its special geographical location and complex climate environment. In the context of global warming, impacts of climate change on forest ecosystems in the Qinling Mountains are of great significance. Global climate model which is widely used in large-scale climate simulation studies, cannot be applied in this region due to low resolution. Statistical downscaling model can be used to provide local-scale daily temperature and precipitation for studying climate change impacts of this region. Different statistical downscaling models have different principals, as well as different predictors. Therefore, it is necessary to compare different downscaling models and to select more appropriate downscaling model to obtain reasonable simulation results. Focusing on the future daily mean temperature and precipitation for the Qinling Mountains, the multiple linear regression and the ridge regression downscaling approaches based on ASD (automated statistical downscaling) model are implemented. Outputs from the general circulation model (MPI-ESM-LR) under RCP4.5 and RCP8.5 scenarios are analyzed. Simulation results of two statistical downscaling approaches during calibration and validation periods are analyzed and future climate change projections in periods of 2006-2040, 2041-2070 and 2071-2100 are generated. During the calibration and validation periods, both statistical downscaling approaches perform well in simulating the mean temperature and precipitation. However, the multiple linear regression perform better than the ridge regression, and the mean of simulated temperature is better than that of precipitation. Both statistical downscaling approaches project an increase for the mean temperature and its magnitudes depending on the emission scenarios, i.e., RCP8.5 resulting in a higher temperature than RCP4.5. The annual precipitation would slightly decrease but not statistically significantly, while the seasonal distribution of annual precipitation will change, a slightly increase in spring and a decrease in other seasons, especially in summer. In summary, the multiple linear regression is more suitable for statistical downscaling research in the Qinling Mountains.
-
表 1 NCEP/NCAR和MPI-ESM-LR预报因子
Table 1 Predictors used for NCEP/NCAR and MPI-ESM-LR
序号 变量 1 500 hPa相对湿度 2 700 hPa相对湿度 3 850 hPa相对湿度 4 海平面气压 5 500 hPa温度 6 700 hPa温度 7 850 hPa温度 8 近地面温度 9 500 hPa纬向风速 10 700 hPa纬向风速 11 850 hPa纬向风速 12 近地面纬向风速 13 500 hPa经向风速 14 700 hPa经向风速 15 850 hPa经向风速 16 近地面经向风速 17 500 hPa位势高度 18 700 hPa位势高度 19 850 hPa位势高度 表 2 多元线性回归的解释方差和均方根误差
Table 2 Explained variance and root mean square error of the multiple linear regression in calibration period
站点 气温 降水量 解释方差 均方根误差 解释方差 均方根误差 宝鸡 0.969 0.0060 0.208 0.648 西安 0.968 0.0063 0.182 0.569 华山 0.919 0.0093 0.241 1.14 略阳 0.961 0.0043 0.266 2.30 汉中 0.958 0.0053 0.227 2.08 佛坪 0.956 0.0053 0.184 0.955 商县 0.973 0.0040 0.196 0.826 镇安 0.962 0.0059 0.153 1.24 石泉 0.964 0.0075 0.297 1.95 安康 0.957 0.0082 0.204 1.21 表 3 岭回归的解释方差和均方根误差
Table 3 Explained variance and root mean square error of the ridge regression in calibration period
站点 气温 降水量 解释方差 均方根误差 解释方差 均方根误差 宝鸡 0.969 0.0157 0.207 0.899 西安 0.968 0.0188 0.179 0.749 华山 0.919 0.0164 0.240 1.35 略阳 0.961 0.0227 0.267 2.55 汉中 0.959 0.0256 0.234 2.73 佛坪 0.956 0.0180 0.182 1.18 商县 0.973 0.0175 0.196 1.12 镇安 0.962 0.0211 0.155 1.61 石泉 0.962 0.0231 0.297 2.02 安康 0.957 0.0253 0.204 1.97 -
[1] 白红英.秦巴地区森林植被对环境变化的响应.北京:科学出版社, 2014. [2] 张莉, 丁一汇, 吴统文, 等.CMIP5模式对21世纪全球和中国年平均地表气温变化和2℃升温阈值的预估.气象学报, 2013, 71(6):1047-1060. http://d.old.wanfangdata.com.cn/Periodical/qxxb201306005 [3] 傅抱璞, 李兆元.秦岭山地的气候特点.陕西气象, 1983(1):1-11. http://cdmd.cnki.com.cn/Article/CDMD-10697-1011088067.htm [4] 刘洪滨, 邵雪梅.秦岭南坡佛坪1789年以来1~4月平均温度重建.应用气象学报, 2003, 14(2):188-196. doi: 10.3969/j.issn.1001-7313.2003.02.006 [5] 高翔, 白红英, 张善红, 等.1959-2009年秦岭山地气候变化趋势研究.水土保持通报, 2012, 32(1):207-211. http://www.cqvip.com/QK/95720X/201201/41131757.html [6] 叶笃正, 曾庆存, 郭裕福.当代气候研究.北京:气象出版社, 1991. [7] 董敏, 吴统文, 王在志, 等.BCC_CSM1.0模式对20世纪降水及其变率的模拟.应用气象学报, 2013, 24(1):1-11. doi: 10.3969/j.issn.1001-7313.2013.01.001 [8] 汪方, 丁一汇.全球气候模式对东亚地区地表短波辐射的模拟检验.应用气象学报, 2008, 19(6):749-759. doi: 10.3969/j.issn.1001-7313.2008.06.015 [9] 陈丽娟, 顾伟宗, 伯忠凯, 等.黄淮地区夏季降水的统计降尺度预测.应用气象学报, 2017, 28(2):129-141. http://qikan.camscma.cn/jams/ch/reader/view_abstract.aspx?file_no=20170201&flag=1 [10] 高超, 张正涛, 陈实, 等.RCP4.5情景下淮河流域气候变化的高分辨率模拟.地理研究, 2014, 31(3):467-477. http://d.old.wanfangdata.com.cn/Periodical/dlyj201403006 [11] 周鑫, 李清泉, 孙秀博, 等.BCC_CSM1.1模式对我国气温的模拟和预估.应用气象学报, 2014, 25(1):95-106. http://qikan.camscma.cn/jams/ch/reader/view_abstract.aspx?file_no=20140110&flag=1 [12] Sun Q H, Miao C Y, Duan Q Y.Projected changes in temperature and precipitation in ten river basins over China in 21st century.Int J Climatol, 2015, 35(6):1125-1141. doi: 10.1002/joc.2015.35.issue-6 [13] IPCC.Climate Change 2014:The Physical Science Basis.Contribution of Working Group Ⅲ to the Fifth Assessment Report of the Intergovenmental Panel on Climate Change.Cambridge & New York:Cambridge University Press, 2014. [14] 赵宗慈, 罗勇, 黄建斌.评估43个CMIP5模式模拟全球能量平衡能力.气候变化研究进展, 2015, 11(3):227-230. doi: 10.3969/j.issn.1673-1719.2015.03.010 [15] 刘昌明, 刘文彬, 傅国斌, 等.气候影响评价中统计降尺度若干问题的探讨.水科学进展, 2012, 23(3):427-437. http://d.old.wanfangdata.com.cn/Periodical/skxjz201203019 [16] 李巧萍, 丁一汇, 董文杰.SRES A2情景下未来30年我国东部夏季降水变化趋势.应用气象学报, 2008, 19(6):770-780. doi: 10.3969/j.issn.1001-7313.2008.06.017 [17] 丁梅, 江志红, 陈威霖.非齐次隐马尔可夫降尺度方法对江淮流域夏季逐日降水的模拟及其评估.气象学报, 2016, 74(5):757-771. http://d.old.wanfangdata.com.cn/Periodical/qxxb201605008 [18] Maraun D, Rust H W, Osborn R J.Synoptic airflow and UK daily precipitation extremes:Development and validation of a vector generalised linear model.Extremes, 2010, 13(2):133-153. doi: 10.1007/s10687-010-0102-x [19] Christensen J H, Christensen O B.A summary of PRUDENCE model projections of changes in European climate by the end of this century.Clim Change, 2007, 81(1):7-30. http://treephys.oxfordjournals.org/external-ref?access_num=10.1007/s10584-006-9210-7&link_type=DOI [20] 陈丽娟, 李维京, 张培群, 等.降尺度技术在月降水预报中的应用.应用气象学报, 2003, 14(6):648-655. doi: 10.3969/j.issn.1001-7313.2003.06.002 [21] Chu J T, Xia J, Xu C Y.Statistical downscaling the daily precipitation for climate change scenarios in Haihe River basin of China.Journal of Natural Resources, 2008, 23(6):1068-1077. http://en.cnki.com.cn/Article_en/CJFDTOTAL-ZRZX200806012.htm [22] 曾晓青, 王式功, 刘还珠, 等.统计降尺度方法在青海省冬季最低温度预测中的应用.高原气象, 2009, 29(6):1471-1477. http://d.old.wanfangdata.com.cn/Periodical/gyqx200906027 [23] Giorgi F, Mearns L O.Calculation of average, uncertainty range, and reliability of regional climate changes from AOGCM simulations via the "reliability ensemble averaging" (REA) method.J Climate, 2002, 15(10):1141-1158. doi: 10.1175/1520-0442(2002)015<1141:COAURA>2.0.CO;2 [24] 刘永和, 郭维栋, 冯锦明, 等.气象资料的统计降尺度方法综述.地球科学进展, 2011, 26(8):837-847. http://d.old.wanfangdata.com.cn/Periodical/dqkxjz201108007 [25] Maraun D, Wetterhall F, Ieson A M, et al.Precipitation downscaling under climate change:Recent developments to bridge the gap between dynamical models and the end user.Rev Geophys, 2010, 48(3):633-650. doi: 10.1029/2009RG000314/full [26] 白红英, 马新萍, 高翔, 等.基于DEM的秦岭山地1月气温及0℃等温线变化.地理学报, 2012, 67(11):1443-1450. doi: 10.11821/xb201211001 [27] Tallapragada V.Overview of the NOAA/NCEP Operational Hurricane Weather Research and Forecast (HWRF) Modelling System.Advanced Numerical Modeling and Data Assimilation Techniques for Tropical Cyclone Prediction.Springer Netherlands, 2016. [28] 陈晓晨, 徐影, 许崇海, 等.CMIP5全球气候模式对中国地区降水模拟能力的评估.气候变化研究进展, 2014, 10(3):217-225. doi: 10.3969/j.issn.1673-1719.2014.03.011 [29] 唐慧琴, 曾刚, 黄悦.BCC_CSM1.1(m)模式对热带太平洋潜热通量的评估.应用气象学报, 2016, 27(4):463-472. http://qikan.camscma.cn/jams/ch/reader/view_abstract.aspx?file_no=20160409&flag=1 [30] Huth R.Statistical downscaling of daily temperature in central European.J Climate, 2002, 15(13):1731-1742. doi: 10.1175/1520-0442(2002)015<1731:SDODTI>2.0.CO;2 [31] Huth R.Sensitivity of local daily temperature change estimates to the selection of downscaling models and predictors.J Climate, 2004, 17(3):640-652. doi: 10.1175/1520-0442(2004)017<0640:SOLDTC>2.0.CO;2 [32] Hessami M, Gachon P, Ouarda T B, et al.Automated regression-based statistical downscaling tool.Environmental Modeling and Software, 2008, 23(6):813-834. doi: 10.1016/j.envsoft.2007.10.004