留言板

尊敬的读者、作者、审稿人, 关于本刊的投稿、审稿、编辑和出版的任何问题, 您可以本页添加留言。我们将尽快给您答复。谢谢您的支持!

姓名
邮箱
手机号码
标题
留言内容
验证码

一种集成风向风速的风场空间检验方法

张博 赵滨

张博, 赵滨. 一种集成风向风速的风场空间检验方法. 应用气象学报, 2019, 30(2): 154-163. DOI: 10.11898/1001-7313.20190203..
引用本文: 张博, 赵滨. 一种集成风向风速的风场空间检验方法. 应用气象学报, 2019, 30(2): 154-163. DOI: 10.11898/1001-7313.20190203.
Zhang Bo, Zhao Bin. A spatial verification method for integrating wind speed and direction. J Appl Meteor Sci, 2019, 30(2): 154-163. DOI:  10.11898/1001-7313.20190203.
Citation: Zhang Bo, Zhao Bin. A spatial verification method for integrating wind speed and direction. J Appl Meteor Sci, 2019, 30(2): 154-163. DOI:  10.11898/1001-7313.20190203.

一种集成风向风速的风场空间检验方法

DOI: 10.11898/1001-7313.20190203
资助项目: 

公益性行业(气象)科研专项 GYHY20150600

国家重点研究发展计划 2017YFA0604500

国家重点研究发展计划 2017FYC150190X

国家科技支撑计划 2015BAC03B04

国家科技支撑计划 2015BAC03B07

详细信息
    通信作者:

    张博, 邮箱:zhangb81@yeah.net

A Spatial Verification Method for Integrating Wind Speed and Direction

  • 摘要: 基于概率分布特征定义全新风速阈值选取方案,不受地域及季节性影响,并综合风向信息建立兼顾风向风速的风场分类列表,采用邻域空间检验技术构建可集成风向风速的矢量风场检验方法。基于2018年4月1—30日GRAPES_Meso模式不同分辨率(10 km及3 km)逐小时预报产品,利用所开发的矢量风场检验方法分析表明:模式风向预报的随机性随着风速的增大而减小,即弱风的风向难以成功预报。通过矢量风场综合分析发现高分辨率预报效果在170 km空间尺度上24 h预报最大评分优势可达0.24,各邻域空间尺度上评分分布趋势保持一致。通过敏感性分析发现,所获取的综合指标可用于反映风场预报性能。同时,不同矢量风场分类方法将对评估结果产生影响,高分类方法评分稳定性更好,低分类方法受限于单一分类权重过大而影响评估一致性。因此,在计算能力允许的条件下,选择较高分类方式将有助于获得更为稳定的检验效果。
  • 图  1  17种包含风向风速的矢量风分类示意图

    Fig. 1  The definition of 17-class basic wind speed and direction

    图  2  GRAPES_3 km模式2018年4月16日12 h预报风向误差随实况风速分布

    Fig. 2  GRAPES_3 km 12-hour wind direction forecast change with observed wind speed initialed on 16 Apr 2018

    图  3  2018年4月1—30日24 h预报的风向及风速均方根误差分布

    Fig. 3  Root mean square errors of wind speed and wind direction for 24-hour forecast from 1 Apr to 30 Apr in 2018

    图  4  2018年4月1—30日36 h逐时预报平均Fw分布(黑线为Fw=0.5)(a)GRAPES_10 km, (b)GRAPES_3 km

    Fig. 4  Hourly Fw for 36-hour forecast averaged from 1 Apr to 30 Apr in 2018 with GRAPES_10 km(a) and GRAPES_3 km(b)(the black line denotes Fw =0.5)

    图  5  2018年4月1—30日170 km邻域空间尺度下24 h预报Fw逐日演变

    Fig. 5  Fw of 24-hour forecast from 1 Apr to 30 Apr in 2018 with 170 km spatial scale

    图  6  2018年4月1—30日不同邻域空间尺度24 h预报Fw逐日分布(a)50 km, (b)90 km, (c)130 km, (d)330 km

    Fig. 6  Fw for 24-hour forecast from 1 Apr to 30 Apr in 2018 with different spatial scales of 50 km(a), 90 km(b), 130 km(c), 330 km(d)

    图  7  2018年4月1—30日24 h预报Fc逐日分布

    Fig. 7  Fc for 24-hour forecast from 1 Apr to 30 Apr in 2018

    图  8  2018年4月6日24 h预报的各风场分类中实况和预报所占样本百分比

    Fig. 8  Sample percentage of observation and forecasts in each basic wind class for 24-hour forecast initialed on 6 Apr 2018

    图  9  9种(a)及33种(b)包含风向风速的矢量风示意图

    Fig. 9  The definition of 9-class(a) and 33-class(b) basic wind speed and direction

    图  10  2018年4月1—30日不同矢量风分类方法36 h逐时预报平均Fw分布(黑线为Fw=0.5)

    Fig. 10  Hourly Fw for 36-hour forecast averaged from 1 Apr to 30 Apr 2018(the black line denotes Fw=0.5)

    图  11  2018年4月1—30日9种及33种分类方法Fc综合指标24 h预报逐日分布

    Fig. 11  Daily Fc for 24-hour forecast from 1 Apr to 30 Apr in 2018

  • [1] Atger F.Verification of intense precipitation forecasts from single models and ensemble prediction systems.Nonlinear Processes Geophys, 2001, 8:401-417. doi:  10.5194/npg-8-401-2001
    [2] Weisman M L, Davis C, Wang W, et al.Experiences with 0-36-h explicit convective forecasts with the WRF-ARW model.Wea Forecasting, 2008, 23:407-437. doi:  10.1175/2007WAF2007005.1
    [3] 沈学顺, 苏勇, 胡江林, 等.GRAPES_GFS全球中期预报系统的研发和业务化.应用气象学报, 2017, 28(1):1-10. http://qikan.camscma.cn/jams/ch/reader/view_abstract.aspx?file_no=20170101&flag=1
    [4] 谭桂容, 范艺媛, 牛若芸.江淮地区强降水分型及其环流演变.应用气象学报, 2018, 29(4):396-409. http://qikan.camscma.cn/jams/ch/reader/view_abstract.aspx?file_no=20180402&flag=1
    [5] 张萌, 于海鹏, 黄建平, 等.GRAPES_GFS2.0模式系统误差评估.应用气象学报, 2018, 29(5):571-583. http://qikan.camscma.cn/jams/ch/reader/view_abstract.aspx?file_no=20180506&flag=1
    [6] 杨挺, 端义宏, 徐晶, 等.城市效应对登陆热带气旋妮妲降水影响的模拟.应用气象学报, 2018, 29(4):410-422. http://qikan.camscma.cn/jams/ch/reader/view_abstract.aspx?file_no=20180403&flag=1
    [7] Murphy A H.A note on the ranked probability score.J Appl Meteor, 1971, 10:155-156. doi:  10.1175/1520-0450(1971)010<0155:ANOTRP>2.0.CO;2
    [8] 洪伟, 郑玉兰.基于ECMWF产品福建省前汛期短时强降水预报方法.应用气象学报, 2018, 29(5):584-595. http://qikan.camscma.cn/jams/ch/reader/view_abstract.aspx?file_no=20180507&flag=1
    [9] Ahijevych D, Gilleland E, Barbara G B, et al.Application of spatial verification methods to idealized and NWP-gridded precipitation forecasts.Wea Forecasting, 2009, 24:1485-1497. doi:  10.1175/2009WAF2222298.1
    [10] Brill K F, Mesinger F.Applying a general analytic, method for assessing bias sensitivity to bias-adjusted threat, and equitable threat scores.Wea Forecasting, 2009, 24:1748-1754. doi:  10.1175/2009WAF2222272.1
    [11] Baldwin M E, Kain J S.Sensitivity of several performance measures to displacement error, bias, and event frequency.Wea Forecasting, 2006, 21:636-648. doi:  10.1175/WAF933.1
    [12] Elizabeth E.Neighborhood verification:A strategy for rewarding close forecasts.Wea Forecasting, 2009, 24:1498-1510. doi:  10.1175/2009WAF2222251.1
    [13] Casati B.New developments of the intensity-scale technique within the spatial verification methods intercomparison project.Wea Forecasting, 2010, 25:113-143. doi:  10.1175/2009WAF2222257.1
    [14] Zepeda-Arce J, Foufoula-Georgiou E, Droegemeier K K.Space-time rainfall organization and its role in validating quantitative precipitation forecasts.J Geophys Res, 2000, 105(8):10129-10146. doi:  10.1029/1999JD901087/full
    [15] Yates E, Anquetin S, Ducrocq V, et al.Point and areal validation of forecast precipitation fields.Meteorol Appl, 2006, 13:1-20. doi:  10.1017/S1350482705001921/full
    [16] Roberts N M, Lean H W.Scale-selective verification of rainfall accumulations from high-resolution forecasts of convective events.Mon Wea Rev, 2008, 136:78-97. doi:  10.1175/2007MWR2123.1
    [17] Zhao B, Zhang B.Assessing hourly precipitation forecast skill with the fractions skill score.J Meteor Res, 2018, 32(1):135-145. doi:  10.1007/s13351-018-7058-1
    [18] 赵滨, 张博.邻域空间检验方法在降水评估中的应用.暴雨灾害, 2018, 37(1):1-7. doi:  10.3969/j.issn.1004-9045.2018.01.001
    [19] Skok G, Roberts N.Analysis of Fractions Skill Score properties for random precipitation fields and ECMWF forecasts.Q J R Meteor Soc, 2016, 142:2599-2610. doi:  10.1002/qj.2849
    [20] 唐文苑, 郑永光, 张小雯.基于FSS的高分辨率模式华北对流预报能力评估.应用气象学报, 2018, 29(5):513-523. http://qikan.camscma.cn/jams/ch/reader/view_abstract.aspx?file_no=20180501&flag=1
    [21] 毕宝贵, 代刊, 王毅, 等.定量降水预报技术进展.应用气象学报, 2016, 27(5):534-549. http://qikan.camscma.cn/jams/ch/reader/view_abstract.aspx?file_no=20160503&flag=1
    [22] Davies B M, Thomson D J.Comparisons of some parameterizations of wind direction variability with observations.Atmos Environ, 1999, 33:4909-4917. doi:  10.1016/S1352-2310(99)00287-3
    [23] Mahrt L.Surface wind direction variability.J Appl Meteor Climatol, 2011, 50:144-152. doi:  10.1175/2010JAMC2560.1
    [24] Dorninger M, Mittermaier M P, Gilleland E, et al.MesoVICT:Mesoscale Verification Inter-Comparison over Complex Terrain.NCAR Technical Note NCAR/TN-505+STR, 2013:1-23. http://adsabs.harvard.edu/abs/2015EGUGA..1711959D
    [25] Rodwell M J, Richardson D S, Hewson T D, et al.A new equitable score suitable for verifying precipitation in numerical weather prediction.Quart J Roy Meteor Soc, 2010, 136:1344-1363. doi:  10.1002/qj.656/full
    [26] Haiden T M, Rodwell M J, Richardson D S.Intercomparison of global model precipitation forecast skill in 2010/11 using the SEEPS score.Mon Wea Rev, 2012, 140:2720-2733. doi:  10.1175/MWR-D-11-00301.1
    [27] 黄丽萍, 陈德辉, 邓莲堂, 等.GRAPES_Meso V4.0主要技术改进和预报效果检验.应用气象学报, 2017, 28(1):25-37. http://qikan.camscma.cn/jams/ch/reader/view_abstract.aspx?file_no=20170103&flag=1
  • 加载中
图(11)
计量
  • 摘要浏览量:  4078
  • HTML全文浏览量:  1484
  • PDF下载量:  230
  • 被引次数: 0
出版历程
  • 收稿日期:  2018-10-22
  • 修回日期:  2018-12-27
  • 刊出日期:  2019-03-31

目录

    /

    返回文章
    返回