留言板

尊敬的读者、作者、审稿人, 关于本刊的投稿、审稿、编辑和出版的任何问题, 您可以本页添加留言。我们将尽快给您答复。谢谢您的支持!

姓名
邮箱
手机号码
标题
留言内容
验证码

一次正地闪触发两个并发上行闪电的光电观测

武斌 吕伟涛 齐奇 马颖 陈绿文 宿志国 吴姗姗

武斌, 吕伟涛, 齐奇, 等. 一次正地闪触发两个并发上行闪电的光电观测. 应用气象学报, 2019, 30(3): 257-266. DOI: 10.11898/1001-7313.20190301..
引用本文: 武斌, 吕伟涛, 齐奇, 等. 一次正地闪触发两个并发上行闪电的光电观测. 应用气象学报, 2019, 30(3): 257-266. DOI: 10.11898/1001-7313.20190301.
Wu Bin, Lü Weitao, Qi Qi, et al. Optical and electric field observations of two concurrent upward flashes triggered by a positive cloud-to-ground flash. J Appl Meteor Sci, 2019, 30(3): 257-266. DOI:  10.11898/1001-7313.20190301.
Citation: Wu Bin, Lü Weitao, Qi Qi, et al. Optical and electric field observations of two concurrent upward flashes triggered by a positive cloud-to-ground flash. J Appl Meteor Sci, 2019, 30(3): 257-266. DOI:  10.11898/1001-7313.20190301.

一次正地闪触发两个并发上行闪电的光电观测

DOI: 10.11898/1001-7313.20190301
资助项目: 

国家自然科学基金面上项目 41475003

国家自然科学基金面上项目 41775010

国家重点研究发展计划 2017YFC1501504

详细信息
    通信作者:

    吕伟涛, 邮箱:lyuwt@foxmail.com

Optical and Electric Field Observations of Two Concurrent Upward Flashes Triggered by a Positive Cloud-to-ground Flash

  • 摘要: 广州高建筑物雷电观测站光电同步观测系统于2017年6月16日记录到一次峰值电流达+141 kA的单回击正地闪触发两个并发上行闪电过程。利用高速摄像、普通摄像和电场变化数据分析了触发型上行闪电的始发特征和机理。结果表明:正地闪回击后约0.8 ms内,在距正地闪接地点约3.9 km的广州塔(高600 m)和4.1 km的东塔(高530 m)分别有上行闪电始发。正地闪回击过程中和大量正电荷以及之后可能有云内负先导朝高塔方向快速伸展造成塔顶局部区域的电场发生突变是两个上行闪电激发的原因。两个上行闪电在353 ms内发生7次回击,其中6次在广州塔上,仅1次在东塔上,且广州塔回击峰值电流平均值(-21.4 kA)约为东塔回击峰值电流(-7.3 kA)的3倍,表明广州塔上行闪电通道可能比东塔上行闪电通道伸展至分布范围更广、电荷量(或电荷密度)更大的负电荷区。两个上行闪电先导的二维速率变化范围为9.4×104~1.8×106 m·s-1,平均值为6.9×105 m·s-1
  • 图  1  单反相机拍摄的闪电发光通道静止照片(曝光时间为1 s)

    Fig. 1  The still image of lightning channel obtained using a digital SLR camera with an exposure time of 1 s

    图  2  站点1、站点2及上行闪电和正地闪接地点相对位置

    Fig. 2  The position of Station-1, Station-2, the initial position of upward flashes and the ground termination point of positive cloud-to-ground flash

    图  3  站点1的高速摄像(HC-3,1000 fps)拍摄的4幅不连续图像(图像进行了反相和对比度增强处理)

    (a)-44 ms,(b)-1 ms,(c)1 ms,(d)19 ms

    Fig. 3  Four(not all consecutive) images obtained using the high-speed video camera(HC-3, 1000 fps) installed at Station-1(images are inverted and contrast-enhanced)

    (a)-44 ms, (b)-1 ms, (c)1 ms, (d)19 ms

    图  4  站点1高速摄像(HC-2,50000 fps)拍摄的4幅不连续图像(图 4a进行反相处理,图 4c图 4d进行对比度增强处理)

    (a)0 μs,(b)20 μs,(c)720 μs,(d) 800 μs

    Fig. 4  Four(not all consecutive) images obtained using the high-speed camera 2(HC-2, 50000 fps) installed at Station-1 (Fig. 4a is inverted, Fig. 4c and Fig. 4d are contrast-enhanced)

    (a)0 μs, (b)20 μs, (c)720 μs, (d) 800 μs

    图  5  图像亮度(a)、快电场(FA)(b)和慢电场(SA)(c)同步变化波形

    (竖线表示正地闪始发时间(约-74 ms),R+CG为正地闪回击,RET表示东塔上行闪电的回击过程,R1~R6为广州塔上行闪电6次回击过程,LET和LCT分别为东塔和广州塔上行闪电中的企图先导)

    Fig. 5  Waveforms of changes in channel brightness(a), fast electric field(FA)(b) and slow electric field(SA)(c)(the vertical line denotes the initial time of the positive cloud-to-ground(CG) flash

    (approximately-74 ms), R+CG denotes the return stroke of positive cloud-to-ground flash, RET denotes the upward flash of the East Tower, R1-R6 denote six strokes on the Canton Tower, LET and LCT are attempted leaders of upward flashes on the East Tower and the Canton Tower)

    图  6  正地闪和上行闪电放电过程示意图

    (“+”代表正电荷,“-”代表负电荷; 箭头表示通道的传输方向; ▲为由闪电定位系统获取的正地闪接地点位置; 带圈数字代表不同放电过程的先后顺序)

    Fig. 6  Possible scenario of the initiation of two upward flashes

    ("+" denotes positive charge, and "-" denotes negative charge; arrows denote directions of channels extension, ▲ denotes ground termination point of positive cloud-to-ground flash A reported by the GDLLS; circled numbers denote the sequence of different discharge processes)

    图  7  两个上行闪电正先导二维速率随高度变化

    Fig. 7  Changes of 2D speed with height of positive leaders of two upward flashes

    表  1  上行负闪回击特征参数

    Table  1  Parameters of two negative upward flashes

    始发建筑物 回击次序 峰值电流/kA 回击间隔/ms
    东塔 1 -7
    广州塔 1 -16
    2 -10 25.3
    3 -25 34.4
    4 -27 51.6
    5 -21 51.9
    6 -30 68.2
    下载: 导出CSV
  • [1] Miki M, Rakov V A, Shindo T, et al.Initial stage in lightning initiated from tall objects and in rocket-triggered lightning.Journal of Geophysical Research Atmospheres, 2005, 110(D2), DOI: 10.1029/2003jd004474.
    [2] Lu W, Wang D, Zhang Y, et al.Two associated upward lightning flashes that produced opposite polarity electric field changes.Geophys Res Lett, 2009, 36(5):277-291, DOI: 10.1029/2008GL036598.
    [3] Zhou H, Diendorfer G, Thottappillil R, et al.Measured current and close electric field changes associated with the initiation of upward lightning from a tall tower.Journal of Geophysical Research Atmospheres, 2012, 117(D8), DOI: 10.1029/2011JD017269.
    [4] Jiang R, Qie X, Wu Z, et al.Characteristics of upward lightning from a 325-m-tall meteorology tower.Atmospheric Research, 2014, 149(6):111-119, DOI: 10.1016/j.atmosres.2014.06.007.
    [5] Saba M M F, Cummins K L, Warner T A, et al.Positive leader characteristics from high-speed video observations.Geophys Res Lett, 2008, 35(7):243-246, DOI: 10.1029/2007gl033000.
    [6] 张义军, 孟青, 马明, 等.闪电探测技术发展和资料应用.应用气象学报, 2006, 17(5):611-620. doi:  10.3969/j.issn.1001-7313.2006.05.011
    [7] 李俊, 张义军, 吕伟涛, 等.一次多回击自然闪电的高速摄像观测.应用气象学报, 2008, 19(4):401-411. doi:  10.3969/j.issn.1001-7313.2008.04.003
    [8] 李俊, 吕伟涛, 张义军, 等.一次多分叉多接地的空中触发闪电过程.应用气象学报, 2010, 21(1):95-100. doi:  10.3969/j.issn.1001-7313.2010.01.013
    [9] 任晓毓, 张义军, 吕伟涛, 等.闪电先导随机模式的建立与应用.应用气象学报, 2011, 22(2):194-202. doi:  10.3969/j.issn.1001-7313.2011.02.008
    [10] 李丹, 张义军, 吕伟涛, 等.闪电先导三维自持发展模式的建立.应用气象学报, 2015, 26(2):203-210. http://qikan.camscma.cn/jams/ch/reader/view_abstract.aspx?file_no=20150208&flag=1
    [11] Wang D, Takagi N, Watanabe T, et al.Observed characteristics of upward leaders that are initiated from a windmill and its lightning protection tower.Geophys Res Lett, 2008, 35(2):196-199, DOI: 10.1029/2007gl032136.
    [12] Berger K.The Earth Flash, Physics of Lightning.1977: 119-190.
    [13] Warner T A, Helsdon J H J, Bunkers M J, et al.UPLIGHTS:Upward lightning triggering study.Bull Amer Meteor Soc, 2013, 94(5):631-635, DOI: 10.1175/BAMS-D-11-00252.1.
    [14] Heidler F H, Manhardt M, Stimper K.Characteristics of upward positive lightning initiated from the Peissenberg Tower, Germany.IEEE Transactions on Electromagnetic Compatibility, 2015, 57(1):102-111, DOI: 10.1109/TEMC.2014.2359584.
    [15] Warner T A, Cummins K L, Orville R E.Upward lightning observations from towers in Rapid City, South Dakota and comparison with National Lightning Detection Network data, 2004-2010.Journal of Geophysical Research Atmospheres, 2012, 117(D19), DOI: 10.1029/2012JD018346.
    [16] Saba M M F, Schumann C, Warner T A, et al.Upward lightning flashes characteristics from high-speed videos.Journal of Geophysical Research Atmospheres, 2016, 121(14):8493-8505, DOI: 10.1002/2016JD025137.
    [17] Miyake K, Suzuki T, Takashima M, et al.Winter lightning on Japan Sea coast-lightning striking frequency to tall structures.IEEE Transactions on Power Delivery, 1990, 5(3):1370-1376, DOI: 10.1109/61.57979.
    [18] Warner T A.Observations of simultaneous upward lightning leaders from multiple tall structures.Atmospheric Research, 2012, 117(11):45-54, DOI: 10.1016/j.atmosres.2011.07.004.
    [19] Lu W, Chen L, Zhang Y, et al.Characteristics of unconnected upward leaders initiated from tall structures observed in Guangzhou.Journal of Geophysical Research Atmospheres, 2012, 117(D19), DOI: 10.1029/2012JD018035.
    [20] Lu W, Chen L, Ma Y, et al.Lightning attachment process involving connection of the downward negative leader to the lateral surface of the upward connecting leader.Geophys Res Lett, 2013, 40(20):5531-5535, DOI: 10.1002/2013gl058060.
    [21] Lv W, Ma Ying, Zhang Yang, et al.Total-sky Lightning Event Observation System and Method.US Patent, No.8902312.Appl.No.13/980, 515.Appl.Date: 2012-03-15.Issue Date: 2014-12-02.
    [22] Wang D, Takagi N.Characteristics of winter lightning that occurred on a windmill and its lightning protection tower in Japan, IEEE Transactions on Power and Energy, 2012, 132(6):568-572, DOI: 10.1541/ieejpes.131.532.
    [23] Chen Luwen, Zhang Yijun, Lu Weitao, et al.Performance evaluation for a lightning location system based on observations of artificially triggered lightning and natural lightning flashes.J Atmos Ocean Technol, 2012, 29:1835-1844, DOI: 10.1175/JTECH-D-12-00028.1.
    [24] Rakov V A, Uman M A.Lightning:Physics and Effects.Cambridge:Cambridge University Press, 2003.
    [25] Mazur V.Physical processes during development of lightning flashes.Comptes Rendus Physique, 2002, 3(10):1393-1409, DOI: 10.1016/S1631-0705(02)01412-3.
    [26] Saba M F, Cummins K L, Warner T A, et al.Positive leader characteristics from high-speed video observations.Geophys Res Lett, 2008, 35(7):L07802, DOI: 10.1029/2007gl033000.
    [27] Campos L Z S, Saba M M F, Philip K E.On β2 stepped leaders in negative cloud-to-ground lightning.Journal of Geophysical Research Atmospheres, 2014, 119(11):6749-6767, DOI: 10.1002/2013JD021221.
    [28] Schumann C, Saba M M F, Warner T A, et al.Upward Flashes Triggering Mechanisms//International Symposium on Lightning Protection, 2017.
    [29] Williams E R, Mattos E V, Machado L A T.Stroke multiplicity and horizontal scale of negative charge regions in thunderclouds.Geophys Res Lett, 2016, 43(10), DOI: 10.1109/SIPDA.2017.8116941.
    [30] Schonland B F J.Progressive lightning Ⅳ.Proc R Soc, London, Ser A, 1938, 164:132-150. doi:  10.1098/rspa.1938.0009
    [31] 谭涌波, 张鑫, 向春燕, 等.建筑物上侧击雷电的三维数值模拟.应用气象学报, 2017, 28(2):227-236. http://qikan.camscma.cn/jams/ch/reader/view_abstract.aspx?file_no=20170210&flag=1
    [32] 刘恒毅, 董万胜, 张义军.云闪K过程的三维时空特征.应用气象学报, 2017, 28(6):62-75. http://qikan.camscma.cn/jams/ch/reader/view_abstract.aspx?file_no=20170606&flag=1
    [33] 林辉, 谭涌波, 马宇翔, 等.雷暴云内电荷水平分布形式对闪电放电的影响.应用气象学报, 2018, 29(3):374-384. http://qikan.camscma.cn/jams/ch/reader/view_abstract.aspx?file_no=20180311&flag=1
  • 加载中
图(7) / 表(1)
计量
  • 摘要浏览量:  4037
  • HTML全文浏览量:  1677
  • PDF下载量:  137
  • 被引次数: 0
出版历程
  • 收稿日期:  2018-10-18
  • 修回日期:  2019-01-02
  • 刊出日期:  2019-05-31

目录

    /

    返回文章
    返回