Environmental Parameter Characteristics of Severe Wind with Extreme Thunderstorm
-
摘要: 为了研究极端雷暴大风天气环境要素特点,选取2002—2017年中国各地区极端雷暴大风个例95个和不伴随强对流的普通雷暴个例95个,通过两者间关键环境参数的对比,揭示极端雷暴大风事件的关键环境参数特征。结果表明:极端雷暴大风天气发生在对流层中层相对干的环境下,表现为400~700 hPa极端雷暴大风对应的单层最大温度露点差和平均温度露点差平均值分别为25.7℃和13.6℃,而普通雷暴的相应值分别为16.2℃和6.5℃。统计结果表明:尽管产生极端雷暴大风的对流风暴和普通雷达对应的地面露点差异并不大,但前者相应的大气可降水量(平均值为37 mm)明显低于后者(平均值为51 mm),差异突出表现在两者湿层厚度的不同上;相对于普通雷暴事件,极端雷暴大风事件对应的对流有效位能值(平均值为1820 J·kg-1)明显高于普通雷暴事件的对应值(平均值为470 J·kg-1);此外,极端雷暴大风事件对应的对流层中下层垂直温度递减率、下沉有效位能、夹卷层平均风速和0~6 km,0~3 km垂直风切变均明显大于普通雷暴事件对应的相应值。Abstract: Cases of severe wind with extreme thunderstorm and ordinary thunderstorm without strong convection in various regions of China are analyzed to study characteristics of environmental element of the severe wind, and 95 cases are selected for each type from 2002 to 2017. The comparison of key environmental parameters of severe wind with extreme thunderstorm and ordinary thunderstorm reveal the key environmental parameter characteristics. Results show that severe wind occurs in a relatively dry environment in the middle troposphere. The single-layered maximum depression of dew point of severe wind is 25.7℃ and the average depression of dew point is 13.6℃ when those of ordinary thunderstorm are 16.2℃ and 6.5℃, respectively. Differences between their ground dew point temperature are not significant, when the mean ground dew point temperature of severe wind is 20.2℃, and the mean of ordinary thunderstorm is 21℃. However, the average precipitable water of the former is 37 mm, significantly lower than that of the latter which is 51 mm due to the discrepancy in moisture layer. The moisture layer thickness of the former is below 2 km in most of cases, obviously shallower than the average thickness of ordinary thunderstorm moisture layer, which is 3.6 km. The mean vertical temperature lapse rate in the middle and lower troposphere of severe wind is larger than that of ordinary thunderstorm. Its average temperature difference between 850 hPa and 500 hPa is 28.2℃, obviously larger than that of ordinary events, which is 23.3℃. At the same time, as the ground dew point temperature is not much different, the mean convective available potential energy of severe wind is 1820 J·kg-1, larger than the average of ordinary thunderstorm which is only 470 J·kg-1. The convective inhibition for two types of thunderstorms are not significantly different, the average convective inhibition of severe wind is 79 J·kg-1, comparing to 55 J·kg-1 of ordinary thunderstorms. 0-6 km vertical wind shear of severe wind is 18.1 m·s-1 and 0-3 km vertical wind shear is 13.2 m·s-1 comparing to 14.3 m·s-1 and 10.5 m·s-1, respectively. The convective available potential energy of downdraft of severe wind is larger whose average value is 1110 J·kg-1 while the mean convective available potential energy of downdraft of ordinary thunderstorm is 620 J·kg-1. And the median entrainment zone mean wind speed of severe wind is 14 m·s-1. It is slightly larger than that of ordinary thunderstorm, which is 12 m·s-1. In addition, there is also discrepancy in the height of characteristic layer of severe wind with extreme thunderstorm and ordinary thunderstorm, such as 0℃ layer, -20℃ layer, and the lifting condensation level.
-
图 3 极端雷暴大风与普通雷暴的地面露点(a)、大气可降水量(b)和湿层厚度(c)箱线图
(线段最高点为统计最大值,最低点为统计最小值,箱线上部框线为第75百分位值,箱线下部框线为第25百分位值,箱内线为平均值,+为中位数)
Fig. 3 Box line diagram of ground dew point(a), precipitable water(b) and moisture layer(c) of severe wind with extremem thunderstorm and ordinary thunderstorm
(the highest point is the statistical maximum, the lowest point is the statistical minimum, the box upper frame line is the 75th percentile threshold value, the lower frame line is the 25th percentile threshold value, line inside box is the average, + is the median)
-
[1] Fujita T T, Byers H R.Spearhead echo and downbursts in the crash of an airliner.Mon Wea Rev, 1977, 105:579-589. doi: 10.1175-1520-0493(1977)105-0129-SEADIT-2.0.CO%3b2/ [2] Knupp K R, Cotton W R.Convective cloud downdraft structure:An interpretive survey.Reviews of Geophysics, 1985, 23(2):183-215. doi: 10.1029/RG023i002p00183 [3] Johns R H, Hirt W D.Derechos:Widespread convectively induced windstorms.Wea Forecasting, 1987, 2(1):32-49. doi: 10.1175/1520-0434(1987)002<0032:DWCIW>2.0.CO;2 [4] Johns R H, Doswell Ⅲ C A.Severe local storms forecasting.Wea Forecasting, 1992, 7:588-612. doi: 10.1175/1520-0434(1992)007<0588:SLSF>2.0.CO;2 [5] 俞小鼎, 张爱民, 郑媛媛, 等.一次系列下击暴流事件的多普勒天气雷达分析.应用气象学报, 2006, 17(4):385-393. doi: 10.3969/j.issn.1001-7313.2006.04.001 [6] 廖玉芳, 俞小鼎, 郭庆.一次强对流系列风暴个例的多普勒雷达资料分析.应用气象学报, 2013, 14(6):656-662. doi: 10.3969/j.issn.1001-7313.2013.06.002 [7] 高晓梅, 俞小鼎, 王令军, 等.山东半岛两次海风锋引起的强对流天气对比.应用气象学报, 2018, 29(2):245-256. http://qikan.camscma.cn/jams/ch/reader/view_abstract.aspx?file_no=20180210&flag=1 [8] 漆梁波, 陈永林.一次长江三角洲表现的综合分析.应用气象学报, 2004, 15(2):162-173. http://qikan.camscma.cn/jams/ch/reader/view_abstract.aspx?file_no=20040221&flag=1 [9] 朱君鉴, 刁秀广, 黄秀韶.一次冰雹风暴的CINR/SA产品分析.应用气象学报, 2004, 15(5):579-589. doi: 10.3969/j.issn.1001-7313.2004.05.008 [10] 王秀明, 俞小鼎, 朱禾.NCEP再分析资料在强对流环境分析中的应用.应用气象学报, 2012, 23(2):139-146. doi: 10.3969/j.issn.1001-7313.2012.02.002 [11] 郑永光, 周康辉, 盛杰, 等.强对流天气监测预报预警技术进展.应用气象学报, 2015, 26(6):641-657. http://qikan.camscma.cn/jams/ch/reader/view_abstract.aspx?file_no=20150601&flag=1 [12] 俞小鼎, 周小刚, 王秀明.雷暴与强对流临近天气预报技术进展.气象学报, 2012, 70(3):513-527. http://d.old.wanfangdata.com.cn/Periodical/nfny201823076 [13] 段亚鹏, 王东海, 李英."东方之星"翻沉事件强对流天气分析及数值模拟.应用气象学报, 2017, 28(6):666-677. http://qikan.camscma.cn/jams/ch/reader/view_abstract.aspx?file_no=20170603&flag=1 [14] 王秀明, 俞小鼎, 周小刚, 等."6.3"区域致灾雷暴大风形成及维持原因分析.高原气象, 2012, 31(2):504-514. http://d.old.wanfangdata.com.cn/Periodical/gyqx201202025 [15] 王秀明, 俞小鼎, 周小刚.雷暴大风环境特征及其对风暴结构影响的对比研究.气象学报, 2013, 71(5):839-852. http://d.old.wanfangdata.com.cn/Periodical/qxxb201305004 [16] 姚建群, 戴建华, 姚祖庆.一次强飑线的成因及维持和加强机制分析.应用气象学报, 2005, 16(6):746-753. doi: 10.3969/j.issn.1001-7313.2005.06.005 [17] 孙虎林, 罗亚丽, 张人禾, 等.2009年6月3-4日黄淮地区强飑线成熟阶段特征分析.大气科学, 2011, 35(1):105-120. doi: 10.3878/j.issn.1006-9895.2011.01.09 [18] 潘玉洁, 赵坤, 潘益农, 等.用双多普勒雷达分析华南一次飑线系统的中尺度结构特征.气象学报, 2012, 70(4):736-751. http://d.old.wanfangdata.com.cn/Periodical/qxxb201204011 [19] 陶岚, 袁招洪, 戴建华, 等.一次夜间弓形回波特征分析.气象学报, 2014, 72(2):220-236. http://d.old.wanfangdata.com.cn/Periodical/qxxb201402003 [20] 孙建华, 郑淋淋, 赵思雄.水汽含量对飑线组织结构和强度影响的数值试验.大气科学, 2014, 38(4):742-755. http://d.old.wanfangdata.com.cn/Periodical/daqikx201404010 [21] 刘香娥, 郭学良.灾害性大风发生机理与飑线结构特征的个例分析模拟研究.大气科学, 2012, 36(6):1150-1164. http://d.old.wanfangdata.com.cn/Periodical/daqikx201206007 [22] 陈明轩, 王迎春.低层垂直风切变和冷池相互作用影响华北地区一次飑线过程发展维持的数值模拟.气象学报, 2012, 70(3):371-386. http://d.old.wanfangdata.com.cn/Periodical/qxxb201203004 [23] Fujita T T.The Downburst//SMRP Research Paper 210.Chicago: University of Chicago, 1985: 1-122. [24] Chisholm A J, Renick J H.The Kinematics of Multicell and Supercell Alberta Hail Studies 1972.Research Council of Alberta Hail Studies Rep, 1972. [25] Wakimoto R M.Convectively Driver hIgh Wind Events//Doswell C A.Meteor Monogr.Amer Meteor Soc, 2001, 50: 255-299. [26] 梁维亮, 屈梅芳, 赖珍权, 等.广西地区一次强雷暴天气过程雷达特征及环境场分析.气象与环境学报, 2016, 32(3):10-18. doi: 10.3969/j.issn.1673-503X.2016.03.002 [27] Turcottev V, Vigneux D.Severe Thunderstorms and Hail Forecasting Using Derived Parameters from Standard RAOBS Data.Atmospheric Environment Service, Canadian Meteor and Oceanogr Soc, 1987:142-153. [28] Johns R H, Howard W D, Marddox R A.Conditions Associated with long-Lived Derechos-An Examination of the Large Scale Environments//16th Conf on Severe Local Storms.Amer Meteor Soc, 1990: 408-412. [29] 高晓梅, 俞小鼎, 王令军, 等.鲁中地区分类强对流天气环境参量特征分析.气象学报, 2018, 76(2):196-212. http://d.old.wanfangdata.com.cn/Periodical/qxxb201802003 [30] 李耀东, 刘健文, 高守亭.动力和能量参数在强对流天气预报中的应用研究.气象学报, 2004, 62(4):401-409. http://d.old.wanfangdata.com.cn/Periodical/qxxb200404003 [31] 秦丽, 李耀东, 高守亭, 等.北京地区雷暴大风的天气-气候学特征研究.气候与环境研究, 2006, 11(6):754-762. doi: 10.3969/j.issn.1006-9585.2006.06.010 [32] Cohen A E, Coniglio M C, Corfidi S F, et al.Discrimination of mesoscale convective system environments using sounding observations.Wea Forecasting, 2007, 22:1045-1062. doi: 10.1175/WAF1040.1 [33] 梁爱民, 张庆红, 申红喜, 等.北京地区雷暴大风预报研究.气象, 2006, 32(11):73-80. http://d.old.wanfangdata.com.cn/Periodical/qx200611012 [34] 廖晓农, 于波, 卢丽华.北京雷暴大风气候特征及短时临近预报方法.气象, 2009, 35(9):18-28. http://d.old.wanfangdata.com.cn/Periodical/qx200909003 [35] 廖晓农.北京雷暴大风日环境特征分析.气候与环境研究, 2009, 14(1):54-62. http://d.old.wanfangdata.com.cn/Periodical/qhyhjyj200901006 [36] 李文娟, 郦敏杰.统计方法在雷暴潜势预报中的应用//第26届中国气象学会年会论文集.杭州, 2011: 2351-2356. [37] 王秀明, 俞小鼎, 周小刚.雷暴潜势预报中几个基本问题的讨论.气象, 2014, 40(4):389-399. doi: 10.3969/j.issn.1000-6362.2014.04.005 [38] 樊李苗, 俞小鼎.中国短时强对流天气的若干环境参数特征分析.高原气象, 2013, 32(1):156-165. http://d.old.wanfangdata.com.cn/Periodical/gyqx201301016 [39] 杨晓霞, 胡顺起, 姜鹏, 等.雷暴大风落区的天气学模型和物理量参数研究.高原气象, 2014, 33(4):1054-1068. http://d.old.wanfangdata.com.cn/Periodical/gyqx201404019 [40] 费海燕, 王秀明, 周小刚, 等.中国强雷暴大风的气候特征和环境参数分析.气象, 2016, 42(12):1513-1521. doi: 10.7519/j.issn.1000-0526.2016.12.009 [41] 苏爱芳, 张宁, 袁小超, 等.河南"7.14"强降水和"8.02"雷暴大风过程β中尺度对流系统对比分析.暴雨灾害, 2016, 35(2):126-137. doi: 10.3969/j.issn.1004-9045.2016.02.005 [42] 刘晓初, 李潇潇, 李燕, 等.大连地区雷暴大风探空资料和雷达回波特征分析.安徽农业科学, 2017, 45(11):176-181. doi: 10.3969/j.issn.0517-6611.2017.11.057 [43] [2018-10-29].NWS/NOAA 2007 The Enhanced Fujita Scale (EF Scale).https://www.spc.noaa.gov/efscale/.[2014-10-26]. [44] 陶岚, 严红梅.2004-2011上海31次雷雨大风过程环境特征分析//第29届中国气象学会年会, 2012: 1-10. [45] 方翀, 王西贵, 盛杰, 等.华北地区雷暴大风的时空分布及物理量统计特征分析.高原气象, 2017, 36(5):1-18. http://www.wanfangdata.com.cn/details/detail.do?_type=perio&id=gyqx201705020 [46] 雷蕾, 孙继松, 魏东.利用探空资料判别北京地区夏季强对流的天气类别.气象, 2011, 37(2):136-141. doi: 10.3969/j.issn.1006-8775.2011.02.006 [47] 陈哲.中国探空气球水平漂移总体特征分析.气象, 2010, 36(2):22-27. http://d.old.wanfangdata.com.cn/Periodical/qx201002003