Dynamic Linkages Between Heat Wave Events in Jianghuai Region and Arctic Summer Cold Anomaly
-
摘要: 利用NCEP/NCAR再分析资料,通过合成分析和相关分析,研究了2010年、2013年及2016年夏季江淮地区高温事件发生时,大气环流异常的主要特征及其与北极冷异常的可能联系。结果表明:这3年江淮地区夏季高温事件发生频次明显偏高,期间江淮地区500 hPa位势高度为正异常,对流层中低层平均温度为暖异常,整个对流层和平流层纬向风减弱;而北极500 hPa高度为负异常,对流层中低层平均温度异常偏冷,纬向风明显加强。因此,江淮地区高温事件与对流层纬向风存在密切联系,在东亚中低纬度地区呈负相关,而在北极呈正相关。东亚中低纬度地区对流层西风减弱抑制对流活动,地面吸收太阳短波辐射增加,进而有利于高温事件发生。Abstract: Summer high temperature events have been occurring with increasing frequency since 2000, which have disastrous consequence for society, economy and human production and life. During recent years, causes and effects of high temperature events in East Asia have been focused in many research efforts. However, relationships between high temperature events in East Asia summer and cold or warm anomalies in the Arctic during the same period, especially in the seasonal time scale, attract little attention.Based on reanalysis data of NCEP/NCAR, main characteristics of atmospheric circulation anomalies and its possible dynamics of Arctic cold anomalies during the summer of 2010, 2013 and 2016, are analyzed by using both composite analysis and correlation analysis. Results show that the frequency of high temperature events in East Asia is complex. High temperature events occurred in Jianghuai Region accompanied by 500 hPa positive geopotential height anomalies, warm anomalies in the middle and low tropospheric, weakened westerly winds throughout the troposphere and stratosphere over middle and low latitudes of East Asian. And meanwhile, over most of the Arctic, 500 hPa height negative anomalies are corresponded with 500-1000 hPa negative thickness anomalies, cold anomalies in the middle and low tropospheric and strengthened westerlies throughout the troposphere and stratosphere. Results show that the high temperature events in Jianghuai Region of 2010, 2013 and 2016 are closely related to the tropospheric zonal wind. It shows that high temperature events in Jianghuai Region is negatively correlated with the tropospheric zonal wind in middle and low latitudes of East Asia, while positively correlated with that over Arctic areas. It's also found that this correlation is not limited to 200 hPa, which occurs through the troposphere and stratosphere. Evidence suggests that during the high temperature events in Jianghuai Region of 2010, 2013 and 2016, weakened upper westerly winds over the middle and low latitudes of East Asian enhance barotropy and decrease baroclinity in this area, which suppress convection and have great contributions to the generation and maintenance of anticyclone. Thereby resulting in reduced cloud cover and enhancing the downwelling surface shortwave radiation, which contributes to increase heat waves. Possible causes of westerly winds anomalies over the Arctic and mid-and low-latitudes of East Asia during high temperature events in Jianghuai Region are also discussed through dynamic diagnosis.
-
图 2 夏季江淮地区高温覆盖面积和高温异常的逐日区域平均频次
(黑线表示1个标准差,平均值为1979—2008年平均)
Fig. 2 Coverage area and the daily regional-averaged frequency of summer high temperature over Jianghuai Region in 2010, 2013 and 2016
(the black line represents one standard deviation, relative to the summer mean averaged over the period from 1979 to 2008)
图 3 2010年(a)、2013年(b)及2016年(c)夏季江淮地区高温事件发生时500~1000 hPa大气厚度异常和2010年(d)、2013年(e)及2016年(f)500 hPa高度异常的合成
(绿色虚线、白色实线区域分别表示达到0.05和0.01显著性水平的区域)
Fig. 3 Composited 500-1000 hPa thickness for heat wave events over Jianghuai Region in 2010(a), 2013(b) and 2016(c) with corresponding 500 hPa geopotential height anomalies in 2010(d), 2013(e) and 2016(f)
(green dash contours and white contours denote passing tests of 0.05 and 0.01 levels, respectively)
图 4 夏季江淮地区高温事件发生时200 hPa纬向风异常场的合成
(打点区域、白色实线区域分别表示达到0.05, 0.01显著性水平,粉色虚线为高空急流区多年平均位置,纬向风超过20 m·s-1)
Fig. 4 Composited 200 hPa zonal wind anomalies during summer heat wave events in Jianghuai Region
(green spot area and white contour denote passing tests of 0.05, 0.01 levels, respectively, pink contours denote the averaged location of upper jet stream, with zonal wind no less than 20 m·s-1)
-
[1] Stocker T F, 秦大河, Planttner G K, 等.IPCC, 2013: 决策者摘要.政府间气候变化专门委员会第五次评估报告第一工作组报告——气候变化2013: 自然科学基础.纽约: 剑桥大学出版社, 2013. [2] Organization W M.The Global Climate 2001-2010: A Decade of Climate Extremes.World Meteorological Organization, 2013. [3] Ding T, Qian W, Yan Z.Changes in hot days and heat waves in China during 1961-2007.Int J Climatol, 2010, 30(10):1452-1462. http://cn.bing.com/academic/profile?id=e24a5b8803ba2ea9ed3d01b7a9076dda&encoded=0&v=paper_preview&mkt=zh-cn [4] Min S K, Kim Y H, Kim M K, et al.Assessing human contribution to the summer 2013 Korea heat wave.Bull Amer Meteor Soc, 2014, 95(9):48-51. http://www.wanfangdata.com.cn/details/detail.do?_type=perio&id=62fb244178c86844f7b6a0326510dc54 [5] Zhou T, Ma S, Zou L.Understanding a hot summer in central eastern China:Summer 2013 in context of multimodel trend analysis.Bull Amer Meteor Soc, 2014, 95(9):54-57. https://www.researchgate.net/publication/298834543_Understanding_a_hot_summer_in_central_eastern_China_summer_2013_in_context_of_multimodel_trend_analysis [6] Gong D Y, Pan Y Z, Wang J A.Changes in extreme daily mean temperatures in summer in eastern China during 1955-2000.Theor Appl Climatol, 2004, 77(1-2):25-37. doi: 10.1007/s00704-003-0019-2 [7] You Q, Kang S, Aguilar E, et al.Changes in daily climate extremes in China and their connection to the large scale atmospheric circulation during 1961-2003.Climate Dyn, 2011, 36(11-12):2399-2417. doi: 10.1007/s00382-009-0735-0 [8] Liu G, Wu R, Sun S, et al.Synergistic contribution of precipitation anomalies over northwestern India and the South China Sea to high temperature over the Yangtze River Valley.Adv Atmos Sci, 2015, 32(9):1255-1265. doi: 10.1007/s00376-015-4280-y [9] Wu B, Zhang R, Ding Y, et al.Distinct modes of the East Asian summer monsoon.J Climate, 2008, 21(5):1122-1138. doi: 10.1175/2007JCLI1592.1 [10] Hu C, Yang S, Wu Q, et al.Shifting El Niño inhibits summer arctic warming and arctic sea-ice melting over the canada basin.Nature Communications, 2016, 7:11721. doi: 10.1038/ncomms11721 [11] 陈丽娟, 袁媛, 杨明珠, 等.海温异常对东亚夏季风影响机理的研究进展.应用气象学报, 2013, 24(5):521-532. doi: 10.3969/j.issn.1001-7313.2013.05.002 [12] 杨莲梅, 张庆云.夏季东亚西风急流扰动异常与副热带高压关系研究.应用气象学报, 2007, 18(4):452-459. doi: 10.3969/j.issn.1001-7313.2007.04.005 [13] Du Y, Xie S P, Huang G, et al.Role of air-sea interaction in the long persistence of El Niño-induced North Indian Ocean warming.J Climate, 2009, 22(8):2023-2038. doi: 10.1175/2008JCLI2590.1 [14] Ding T, Ting D, Hui G, et al.Extreme high-temperature event in southern China in 2016 and the possible role of cross-equatorial flows.Int J Climatol, 2018, 38(9):3579-3594. doi: 10.1002/joc.2018.38.issue-9 [15] 李双双, 杨赛霓, 张东海, 等.近54年京津冀地区热浪时空变化特征及影响因素.应用气象学报, 2015, 26(5):545-554. http://qikan.camscma.cn/jams/ch/reader/view_abstract.aspx?file_no=20150504&flag=1 [16] 陶诗言, 卫捷.再论夏季西太平洋副热带高压的西伸北跳.应用气象学报, 2006, 17(5):513-525. doi: 10.3969/j.issn.1001-7313.2006.05.001 [17] 杨辉, 李崇银.2003年夏季中国江南异常高温的分析研究.气候与环境研究, 2005, 16(1):80-85. http://d.old.wanfangdata.com.cn/Periodical/qhyhjyj200501008 [18] 雷杨娜, 龚道溢, 张自银, 等.中国夏季高温日数时空变化及其环流背景.地理研究, 2009, 28(3):653-662. doi: 10.3321/j.issn:1000-0585.2009.03.010 [19] Xie S, Hu K, Hafner J, et al.Indian Ocean Capacitor Effect on Indo-Western Pacific Climate during the summer following El Niño.J Climate, 2009, 22(3):730-747. doi: 10.1175/2008JCLI2544.1 [20] Yang J L, Liu Q Y, Xie S P, et al.Impact of the Indian Ocean SST basin mode on the Asian summer monsoon.Geophys Res Lett, 2007, 34:L02708. http://www.wanfangdata.com.cn/details/detail.do?_type=perio&id=5e614ca0cb25d3d5ec2095df07a400d8 [21] Hu K, Huang G, Huang R.The impact of tropical Indian ocean variability on summer surface air temperature in China.J Climate, 2011, 24(24):5365-5377. http://cn.bing.com/academic/profile?id=ef36f8ef6da70712c4ffb851c8f4e8db&encoded=0&v=paper_preview&mkt=zh-cn [22] Kosaka Y, Xie S P, Nakamura H.Dynamics of interannual variability in summer precipitation over East Asia.J Climate, 2011, 24(20):5435-5453. doi: 10.1175/2011JCLI4099.1 [23] Wang W, Zhou W, Wang X, et al.Summer high temperature extremes in Southeast China associated with the East Asian jet stream and circumglobal teleconnection.J Geophys Res Atmos, 2013, 118(15):8306-8319. doi: 10.1002/jgrd.50633 [24] Wang W, Zhou W, Li X, et al.Synoptic-scale characteristics and atmospheric controls of summer heat waves in China.Climate Dyn, 2016, 46(9-10):2923-2941. doi: 10.1007/s00382-015-2741-8 [25] Sun J.Record-breaking SST over mid-North Atlantic and extreme high temperature over the Jianghuai-Jiangnan region of China in 2013.Sci Bull, 2014, 59(27):3465-3470. doi: 10.1007/s11434-014-0425-0 [26] Wu B, Zhang R, D'Arrigo R, et al.On the Relationship between winter sea ice and summer atmospheric circulation over Eurasia.J Climate, 2013, 26(15):5523-5536. doi: 10.1175/JCLI-D-12-00524.1 [27] Wu B, Zhang R, Wang B.On the association between spring arctic sea ice concentration and chinese summer rainfall:A further study.Adv Atmos Sci, 2009, 26(4):666-678. doi: 10.1007/s00376-009-9009-3 [28] 唐佳, 武炳义.20世纪90年代初东亚夏季风的年代际转型.应用气象学报, 2012, 23(4):402-413. doi: 10.3969/j.issn.1001-7313.2012.04.003 [29] 张人禾, 张若楠, 左志燕.中国冬季积雪特征及欧亚大陆积雪对中国气候影响.应用气象学报, 2016, 27(5):513-526. http://qikan.camscma.cn/jams/ch/reader/view_abstract.aspx?file_no=20160501&flag=1 [30] Ding Q, Schweiger A, L'Heureux M, et al.Influence of high-latitude atmospheric circulation changes on summertime Arctic sea ice.Nat Climate Change, 2017, 7(4):289-296. doi: 10.1038/nclimate3241 [31] Screen A J.Influence of Arctic sea ice on European summer precipitation.Environmental Research Letters, 2013, 8(4):044015. doi: 10.1088/1748-9326/8/4/044015 [32] Overland J E, Wang M.Increased variability in the early winter subarctic North American atmospheric circulation.J Climate, 2015, 28(18):7297-7305. doi: 10.1175/JCLI-D-15-0395.1 [33] Tang Q H, Zhang X J, Francis J A.Extreme summer weather in northern mid-latitudes linked to a vanishing cryosphere.Nat Climate Change, 2014, 4(1):45-50. doi: 10.1038/nclimate2065 [34] Zhao P, Zhang X D, Zhou M.The sea ice extent anomaly in the North Pacific and its impact on the east Asian summer monsoon rainfall.J Climate, 2004, 17:3434-3447. doi: 10.1175/1520-0442(2004)017<3434:TSIEAI>2.0.CO;2 [35] 蔡学湛.青藏高原雪盖与东亚季风异常对华南前汛期降水的影响.应用气象学报, 2001, 12(3):358-367. doi: 10.3969/j.issn.1001-7313.2001.03.011 [36] 陈烈庭.青藏高原冬春季异常雪盖与江南前汛期降水关系的检验和应用.应用气象学报, 1998, 9(增刊Ⅰ):2-9. http://www.wanfangdata.com.cn/details/detail.do?_type=perio&id=QK199800699492 [37] 武炳义, 黄荣辉, 高登义.冬季北极海冰长期变化对华北降水的可能影响.高原气象, 1999, 18(4):590-594. doi: 10.3321/j.issn:1000-0534.1999.04.014 [38] Niu T, Zhao P, Chen L.Effects of the sea-ice along the North Pacific on summer rainfall in China.Acta Meteor Sinica, 2003, 17:52-64. http://www.wanfangdata.com.cn/details/detail.do?_type=perio&id=243631d772cfde4a2a41759e8326df2a [39] Francis J, Skific N.Evidence linking rapid Arctic warming to mid-latitude weather patterns.Philo Trans R Soc A, 2015, 373:20140170. doi: 10.1098/rsta.2014.0170 [40] Wu B, Francis J A.Summer Arctic cold anomaly dynamically linked to East Asian heat waves.J Climate, 2019, 32(4):1137-1150. doi: 10.1175/JCLI-D-18-0370.1 [41] 陈敏, 耿福海, 马雷鸣, 等.近138年上海地区高温热浪事件分析.高原气象, 2013, 32(2):597-607. http://d.old.wanfangdata.com.cn/Periodical/gyqx201302028 [42] 姜荣, 陈亮, 象伟宁.上海市极端高温天气变化特征.气象与环境学报, 2016, 32(1):66-74. http://d.old.wanfangdata.com.cn/Periodical/lnqx201601010 [43] Overland J E, Wang M.Large-scale atmospheric circulation changes are associated with the recent loss of Arctic sea ice.Tellus Ser A, Dyn Meteor Oceanogr, 2010, 62(1):1-9. doi: 10.1111/j.1600-0870.2009.00421.x [44] Wu B, Yang K, Francis J A.Summer Arctic dipole wind pattern affects the winter Siberian High.Int J Climatol, 2016, 36(13):4187-4201. doi: 10.1002/joc.4623 [45] 黄荣辉.ENSO及热带海-气相互作用动力学研究的新进展.大气科学, 1990, 14(2):234-242. doi: 10.3878/j.issn.1006-9895.1990.02.14 [46] 黄荣辉, 孙凤英.热带西太平洋暖池上空对流活动对东亚夏季风季节内变化的影响.大气科学, 1994, 18(4):456-465. doi: 10.3878/j.issn.1006-9895.1994.04.10 [47] 邹珊珊, 郭品文, 杨慧娟.东亚太平洋与欧亚遥相关型的相互配置及其气候影响.气象科学, 2013, 33(1):10-18. http://d.old.wanfangdata.com.cn/Periodical/qxkx201301002 [48] 赵庆云, 黄建平, 吕萍, 等.2010年夏季北半球气温异常偏高现象及其成因.兰州大学学报(自然科学版), 2011, 47(1):52-56. http://d.old.wanfangdata.com.cn/Periodical/lzdxxb201101009 [49] 刘式适, 黄伟, 刘霞.频散效应对Rossby波动量和热量输送的影响.大气科学, 1994, 18(增刊1):837-846. http://www.cnki.com.cn/Article/CJFDTOTAL-DQXK4S1.007.htm [50] 冉令坤, 高守亭, 雷霆.高空急流区内纬向基本气流加速与EP通量的关系.大气科学, 2005, 29(3):409-416. doi: 10.3878/j.issn.1006-9895.2005.03.08 [51] 陆日宇, 林中达, 张耀存.夏季东亚高空急流的变化及其对东亚季风的影响.大气科学, 2013, 37(2):331-340. http://d.old.wanfangdata.com.cn/Periodical/daqikx201302011