留言板

尊敬的读者、作者、审稿人, 关于本刊的投稿、审稿、编辑和出版的任何问题, 您可以本页添加留言。我们将尽快给您答复。谢谢您的支持!

姓名
邮箱
手机号码
标题
留言内容
验证码

云微物理过程对台风数值模拟的影响

常婉婷 高文华 端义宏 邓琳

常婉婷, 高文华, 端义宏, 等. 云微物理过程对台风数值模拟的影响. 应用气象学报, 2019, 30(4): 443-455. DOI: 10.11898/1001-7313.20190405..
引用本文: 常婉婷, 高文华, 端义宏, 等. 云微物理过程对台风数值模拟的影响. 应用气象学报, 2019, 30(4): 443-455. DOI: 10.11898/1001-7313.20190405.
Chang Wanting, Gao Wenhua, Duan Yihong, et al. The impact of cloud microphysical processes on typhoon numerical simulation. J Appl Meteor Sci, 2019, 30(4): 443-455. DOI:  10.11898/1001-7313.20190405.
Citation: Chang Wanting, Gao Wenhua, Duan Yihong, et al. The impact of cloud microphysical processes on typhoon numerical simulation. J Appl Meteor Sci, 2019, 30(4): 443-455. DOI:  10.11898/1001-7313.20190405.

云微物理过程对台风数值模拟的影响

DOI: 10.11898/1001-7313.20190405
资助项目: 

国家重点基础研究发展计划 2015CB452805

详细信息
    通信作者:

    高文华, 邮箱:whgao@cma.gov.cn

The Impact of Cloud Microphysical Processes on Typhoon Numerical Simulation

  • 摘要: 将中国气象科学研究院(CAMS)混合双参数云微物理方案用于中尺度天气模式WRF,开展了对2013年超强台风天兔(1319)的模拟,通过与台风最佳路径、强度及热带降雨测量卫星(TRMM)资料对比,分析CAMS云微物理方案在模拟台风中的适用性及云微物理过程对模拟台风天兔的影响机制。设计了3组敏感性试验:修改雪粒子质量和落速系数(EXP1),采用海洋性云滴参数(EXP2),同时修改雪粒子质量和落速系数并采用海洋性云滴参数(EXP3)。结果表明:EXP1和EXP3由于霰碰并雪速率的增加及减小的雪下落通量,导致雪含量显著降低,同时也减少了整体冰相物的含量;EXP2和EXP3模拟的台风眼区对流有效位能快速减小,再现了前期台风的快速增强过程,路径偏差也最小;各试验模拟的小时降水率总体偏强,EXP3的降水空间分布与实况更接近,明显降低雪粒子含量,并一定程度上改善模拟的台风路径、强度及降水分布等。该结果不但可为改进适用于台风的云微物理参数化方案提供思路,也可加深云微物理过程对台风影响的认识。
  • 图  1  3层嵌套网格区域设置

    Fig. 1  The triply nested model domains

    图  2  2013年9月18日00:00—22日06:00台风天兔路径(a),海平面最低气压(实线)和中心最大风速(虚线)(b)时间演变

    Fig. 2  Observed and simulated typhoon track(a) and minimum sea level pressure(solid lines) and surface maximum wind speed(dashed lines)(b) from 0000 UTC 18 Sep to 0600 UTC 22 Sep in 2013

    图  3  2013年9月21日02:00 TRMM/PR产品和CTRL模拟的3 km及8 km高度的雷达反射率因子

    (黑线区域表示与TRMM/PR轨道相近的台风主体区域)

    Fig. 3  Horizontal distributions of radar reflectivity at 3 km and 8 km height by TRMM/PR measurements and CTRL simulation at 0200 UTC 21 Sep 2013

    (black lines denote scanning areas of TRMM/PR)

    图  4  2013年9月21日02:00 TRMM/PR产品(a),CTRL模拟(b)的雷达反射率因子的等高频率图

    Fig. 4  Contoured frequency by altitude diagrams(CFAD) of radar reflectivity from TRMM/PR measurements(a) and CTRL simulation(b) at 0200 UTC 21 Sep 2013

    图  5  2013年9月21日02:00台风中心半径300 km范围内TMI/2A12产品(a)和CAMS微物理方案模拟(b)的区域平均水成物含量垂直分布

    Fig. 5  Area-averaged vertical profiles of hydrometeor contents within a radius of 300 km from the typhoon center in TMI/2A12 measurements(a) and CAMS microphysical scheme simulations(b) at 0200 UTC 21 Sep 2013

    图  6  2013年9月18日12:00—22日00:00 4个数值试验模拟的对流有效位能径向时间演变(黑实线表示两倍最大风速半径) (a)CTRL,(b)EXP1,(c)EXP2, (d)EXP3

    Fig. 6  Radius-time Hovmöller diagram of CAPE in the simulated Typhoon Usagi from 1200 UTC 18 Sep to 0000 UTC 22 Sep in 2013(black lines represent 2-time the radius of maximum wind) (a)CTRL, (b)EXP1, (c)EXP2, (d)EXP3

    图  7  2013年9月18日12:00—22日06:00台风中心半径300 km范围内时间-区域平均的水成物含量垂直廓线(a)CTRL,(b)EXP1,(c)EXP2,(d)EXP3

    Fig. 7  Time-area averaged vertical profiles of hydrometeor contents within a radius of 300 km from the typhoon center from 1200 UTC 18 Sep to 0600 UTC 22 Sep in 2013 (a)CTRL, (b)EXP1, (c)EXP2, (d)EXP3

    图  8  2013年9月18日12:00—22日06:00台风中心300 km半径内区域-时间平均的云水、雨水、雪粒子含量主要微物理过程转化率

    Fig. 8  Area-time averaged microphysical process rates within a radius of 300 km from the typhoon center for cloud, rain and snow content from 1200 UTC 18 Sep to 0600 UTC 22 Sep in 2013

    图  9  2013年9月21日02:00降水率空间分布(a)TRMM/PR产品,(b)CTRL,(c)EXP1,(d)EXP2,(e)EXP3

    Fig. 9  Spatial distribution of rainfall rate at 0200 UTC 21 Sep 2013 (a)TRMM/PR measurement, (b)CTRL, (c)EXP1, (d)EXP2, (e)EXP3

  • [1] Tao W K, Simpson J, Sui C H, et al.Heating, moisture, and water budgets of tropical and midlatitude squall lines:Comparisons and sensitivity to long wave radiation.J Atmos Sci, 1993, 50(5):673-690. doi:  10.1175/1520-0469(1993)050<0673:HMAWBO>2.0.CO;2
    [2] Ramanathan V, Crutzen P J, Kiehl J T, et al.Aerosols, climate, and the hydrological cycle.Science, 2001, 294(5549):2119-2124. doi:  10.1126/science.1064034
    [3] McCumber M, Tao W, Simpson J, et al.Comparison of ice-phase microphysical parameterization schemes using numerical simulations of tropical convection.J Appl Meteor, 1991, 30:985-1004. doi:  10.1175/1520-0450-30.7.985
    [4] Li X, Pu Z.Sensitivity of numerical simulation of early rapid intensification of hurricane Emily (2005) to cloud microphysical and planetary boundary layer parameterizations.Mon Wea Rev, 2008, 136:4819-4838. doi:  10.1175/2008MWR2366.1
    [5] Wang M, Zhao K, Xue M, et al.Precipitation microphysics characteristics of a typhoon Matmo (2014) rain band after landfall over eastern China based on polarimetric radar observations.J Geophys Res Atmos, 2016, 121(20):12415-12433. doi:  10.1002/2016JD025307
    [6] 杨挺, 端义宏, 徐晶, 等.城市效应对登陆热带气旋妮妲降水影响的模拟.应用气象学报, 2018, 29(4):410-422. http://qikan.camscma.cn/jams/ch/reader/view_abstract.aspx?file_no=20180403&flag=1
    [7] 冯佳宁, 端义宏, 徐晶, 等.雷达资料同化对2015年台风彩虹数值模拟改进.应用气象学报, 2017, 28(4):399-413. http://qikan.camscma.cn/jams/ch/reader/view_abstract.aspx?file_no=20170402&flag=1
    [8] 刘还珠, 陈德辉, 滕俏彬.不同物理过程参数化对模式台风的影响及其动力结构的研究.应用气象学报, 1998, 9(2):141-150. http://qikan.camscma.cn/jams/ch/reader/view_abstract.aspx?file_no=19980221&flag=1
    [9] 孙晶, 楼小凤, 胡志晋, 等.CAMS复杂云微物理方案与GRAPES模式耦合的数值试验.应用气象学报, 2008, 19(3):315-325. doi:  10.3969/j.issn.1001-7313.2008.03.007
    [10] 屈右铭, 蔡荣辉, 朱立娟, 等.云分析系统在台风莫拉菲数值模拟中的应用.应用气象学报, 2012, 23(5):551-561. doi:  10.3969/j.issn.1001-7313.2012.05.005
    [11] Hong S Y, Lim J O.The WRF single-moment 6-class microphysics scheme (WSM6).J Korean Meteor Soc, 2006, 42(2):129-151. http://cn.bing.com/academic/profile?id=88b7d963485cf080fae5c40fe7cbca20&encoded=0&v=paper_preview&mkt=zh-cn
    [12] Hong S Y, Lim K S, Kim J H, et al.Sensitivity study of cloud-resolving convective simulations with WRF using two bulk microphysical parameterizations:Ice-phase, microphysics versus sedimentation effects.J Appl Meteorol Climatol, 2009, 48(1):61-76. doi:  10.1175/2008JAMC1960.1
    [13] Morrison H, Curry J A, Khvorostyanov V I.A new double-moment microphysics parameterization for application in cloud and climate models.Part Ⅰ:Description.J Atmos Sci, 2005, 62:1665-1677. doi:  10.1175/JAS3446.1
    [14] Brown P R A, Swann H A.Evaluation of key microphysical parameters in three-dimensional cloud-model simulations using aircraft and multiparameter radar data.Q J R Meteorol Soc, 1997, 123:2245-2275. doi:  10.1002/qj.v123:544
    [15] Lord S J, Willoughby H E, Piotrowicz J M.Role of a parameterized ice-phase microphysics in an axisymmetric, nonhydrostatic tropical cyclone model.J Atmos Sci, 1984, 41:2836-2848. doi:  10.1175/1520-0469(1984)041<2836:ROAPIP>2.0.CO;2
    [16] Yang M L, Ching L.A modeling study of Typhoon Toraji (2001):Physical parameterization sensitivity and topographic effect.Terr Atmos and Oceanic Sci, 2005, 16(1):37. http://cn.bing.com/academic/profile?id=fa73e3d4ec569d3fe223ea75b03a32b7&encoded=0&v=paper_preview&mkt=zh-cn
    [17] Tao W K, Shi J J, Chen S S, et al.The impact of microphysical schemes on hurricane intensity and track.Asia-Pacific J Atmos Sci, 2011, 47(1):1-16. http://cn.bing.com/academic/profile?id=8ae922a3de27fd194bafb2d3a796aa26&encoded=0&v=paper_preview&mkt=zh-cn
    [18] Wang Y Q.Recent research progress on tropical cyclone structure and intensity.Tropical Cyclone Research and Review, 2012, 1:254-275. http://cn.bing.com/academic/profile?id=5f58930ff86e6f4954c211a46acc9423&encoded=0&v=paper_preview&mkt=zh-cn
    [19] Wang Y Q.An explicit simulation of tropical cyclones with a triply nested movable mesh primitive equation model:TCM3.Part Ⅱ:Model refinements and sensitivity to cloud microphysics parameterization.Mon Wea Rev, 2002, 30:3022-3036. http://cn.bing.com/academic/profile?id=d73955c543c81b32c87589568cda91ff&encoded=0&v=paper_preview&mkt=zh-cn
    [20] Fovell R G, Corbosiero K L, Kuo H C.Cloud microphysics impact on hurricane track as revealed in idealized experiments.J Atmos Sci, 2009, 66(6):1764-1778. doi:  10.1175/2008JAS2874.1
    [21] 花丛, 刘奇俊.云微物理过程影响登陆台风结构及降水的数值试验.热带气象学报, 2013, 29(6):924-934. http://www.cnki.com.cn/Article/CJFDTOTAL-RDQX201306006.htm
    [22] Deng L, Gao W H, Duan Y H, et al.Microphysical properties of rainwater in Typhoon Usagi (2013):A numerical modeling study.Adv Atmos Sci, 2019, 10.1007/s00376-019-8170-6. http://cn.bing.com/academic/profile?id=95751ae19db15ec4c4c216fa9cb15660&encoded=0&v=paper_preview&mkt=zh-cn
    [23] 胡志晋, 楼小凤, 包绍武, 等.一个简化的混合相云降水显式方案.应用气象学报, 1998, 9(3):257-264. http://qikan.camscma.cn/jams/ch/reader/view_abstract.aspx?file_no=19980338&flag=1
    [24] 胡志晋, 严采蘩.层状云微物理过程的数值模拟(一)——微物理模式.气象科学研究院院刊, 1986(1):37-52. http://cdmd.cnki.com.cn/Article/CDMD-10335-1013186028.htm
    [25] 胡志晋, 何观芳.积雨云微物理过程的数值模拟(一)——微物理模式.气象学报, 1987, 45(4):467-484. http://www.cnki.com.cn/Article/CJFDTotal-QXXB198704011.htm
    [26] Gao W H, Zhao F S, Hu Z J, et al.A two-moment bulk microphysics scheme coupled with a mesoscale model WRF:Model description and first results.Adv Atmos Sci, 2011, 28:1184-1200. doi:  10.1007/s00376-010-0087-z
    [27] 楼小凤, 胡志晋, 王鹏云, 等.中尺度模式云降水物理方案介绍.应用气象学报, 2003, 14(增刊Ⅰ):49-59. http://d.old.wanfangdata.com.cn/Periodical/yyqxxb2003Z1007
    [28] 李淑日, 胡志晋, 王广河.CAMS三维对流云催化模式的改进及个例模拟.应用气象学报, 2003, 14(增刊Ⅰ):78-91. http://d.old.wanfangdata.com.cn/Periodical/yyqxxb2003Z1010
    [29] 史月琴, 楼小凤, 邓雪娇, 等.华南冷锋云系的中尺度和微物理特征模拟分析.大气科学, 2008, 32(5):1019-1036. doi:  10.3878/j.issn.1006-9895.2008.05.03
    [30] Gao W H, Sui C H, Wang T C, et al.An evaluation and improvement of microphysical parameterization from a two-moment cloud microphysics scheme and the southwest monsoon experiment (SoWMEX)/terrain-influenced monsoon rainfall experiment (TiMREX) observations.J Geophys Res, 2011, 116(D19):101. http://cn.bing.com/academic/profile?id=160d2c1c55428eca90ca49943315658e&encoded=0&v=paper_preview&mkt=zh-cn
    [31] Gao W H, Sui C H, Fan J, et al.A study of cloud microphysics and precipitation over the Tibetan Plateau by radar observations and cloud-resolving model simulations.J Geophys Res Atmos, 2016, 121:13735-13752. doi:  10.1002/2015JD024196
    [32] Ying M, Zhang W, Yu H, et al.An overview of the China Meteorological Administration tropical cyclone database.J Atmos Ocean Technol, 2014, 31(2):287-301. doi:  10.1175/JTECH-D-12-00119.1
    [33] Awaka J.Early Results on Rain Type Classification by the Tropical Rainfall Measuring Mission (TRMM) Precipitation Radar.Proc URSI Commission F Triennial Open Symposium Aveiro Portugal, 1998:143-146.
    [34] Skamarock W C, Klemp J B.A time-split nonhydrostatic atmospheric model for weather research and forecasting applications.J Comput Phys, 2008, 227(7):3465-3485. doi:  10.1016/j.jcp.2007.01.037
    [35] Locatelli J D, Hobbs P V.Fall speeds and masses of solid precipitation particles.J Geophy Res, 1974, 79(15):2185-2197. doi:  10.1029/JC079i015p02185
    [36] Mason B J.云物理学.中国科学院大气物理研究所, 译.北京: 科学出版社, 1979.
    [37] Zeng S, Riedi J, Trepte C R, et al.Study of global cloud droplet number concentration with A-Train satellites.Atmos Chem and Phys, 2014, 14:7125-7134. doi:  10.5194/acp-14-7125-2014
    [38] 陈渭民.卫星气象学.北京:气象出版社, 2005.
    [39] 楼小凤.MM5模式的新显示云物理方案的建立和耦合及原微物理方案的对比分析.北京: 北京大学, 2002. http://www.wanfangdata.com.cn/details/detail.do?_type=degree&id=Y469445
    [40] Holliday C R, Thompson A H.Climatological characteristics of rapidly intensifying typhoons.Mon Wea Rev, 1979, 107(8):1022-1034. doi:  10.1175/1520-0493(1979)107<1022:CCORIT>2.0.CO;2
    [41] Kaplan J, Demaria M.Large-scale characteristics of rapidly intensifying tropical cyclones in the North Atlantic Basin.Wea Forecasting, 2003, 18(6):1093-1108. doi:  10.1175/1520-0434(2003)018<1093:LCORIT>2.0.CO;2
    [42] Masunaga H, Matsui T, Tao W K, et al.Satellite data simulator unit:A multisensor, multispectral satellite simulator package.Bull Amer Meteor Soc, 2010, 91:1625-1632. doi:  10.1175/2010BAMS2809.1
    [43] Franklin C N, Holland G J, May P T.Sensitivity of tropical cyclone rainbands to ice-phase microphysics.Mon Wea Rev, 2005, 133:2473-2493. doi:  10.1175/MWR2989.1
    [44] 郭静超.基于WRF模式的暖云降水潜热物理反演算法研究.合肥: 中国科学技术大学, 2016. http://www.wanfangdata.com.cn/details/detail.do?_type=degree&id=Y2925918
    [45] 姚小娟, 黎伟标, 陈淑敏.利用TMI反演的水汽凝结物对热带气旋潜热结构分布的探索研究.大气科学, 2014, 38(5):909-923. http://d.old.wanfangdata.com.cn/Periodical/daqikx201405008
    [46] Miyamoto Y, Takemi T.A transition mechanism for the spontaneous axisymmetric intensification of tropical cyclones.J Atmos Sci, 2013, 70(1):112-129. doi:  10.1175/JAS-D-11-0285.1
    [47] Bryan G H, Rotunno R.The maximum intensity of tropical cyclones in axisymmetric numerical model simulations.Mon Wea Rev, 2009, 137(6):1770-1789. doi:  10.1175/2008MWR2709.1
    [48] Xu J, Wang Y.Sensitivity of tropical cyclone inner-core size and intensity to the radial distribution of surface entropy flux.J Atmos Sci, 2010, 67(6):1831-1852. doi:  10.1175/2010JAS3387.1
    [49] Xu J, Wang Y.Sensitivity of the simulated tropical cyclone inner-core size to the initial vortex size.Mon Wea Rev, 2010, 138(11):4135-4157. doi:  10.1175/2010MWR3335.1
    [50] 王慧.台风Megi(2010)强度和结构变化的数值研究.南京: 南京信息工程大学, 2013. http://cdmd.cnki.com.cn/Article/CDMD-10300-1013340783.htm
    [51] Powell M D.Boundary layer structure and dynamics in outer hurricane rainbands, Part Ⅱ:Downdraft modification and mixed layer recovery.Mon Wea Rev, 1990, 118:918-938. doi:  10.1175/1520-0493(1990)118<0918:BLSADI>2.0.CO;2
  • 加载中
图(9)
计量
  • 摘要浏览量:  4249
  • HTML全文浏览量:  1598
  • PDF下载量:  86
  • 被引次数: 0
出版历程
  • 收稿日期:  2019-02-18
  • 修回日期:  2019-05-27
  • 刊出日期:  2019-07-31

目录

    /

    返回文章
    返回