留言板

尊敬的读者、作者、审稿人, 关于本刊的投稿、审稿、编辑和出版的任何问题, 您可以本页添加留言。我们将尽快给您答复。谢谢您的支持!

姓名
邮箱
手机号码
标题
留言内容
验证码

京津冀周边秸秆燃烧对PM2.5无机组分影响

张方健 徐敬 马建中 寇星霞

张方健, 徐敬, 马建中, 等. 京津冀周边秸秆燃烧对PM2.5无机组分影响. 应用气象学报, 2019, 30(4): 467-478. DOI: 10.11898/1001-7313.20190407..
引用本文: 张方健, 徐敬, 马建中, 等. 京津冀周边秸秆燃烧对PM2.5无机组分影响. 应用气象学报, 2019, 30(4): 467-478. DOI: 10.11898/1001-7313.20190407.
Zhang Fangjian, Xu Jing, Ma Jianzhong, et al. Impact of crop residue burning on PM2.5 inorganic components in Beijing-Tianjin-Hebei and surrounding areas. J Appl Meteor Sci, 2019, 30(4): 467-478. DOI:  10.11898/1001-7313.20190407.
Citation: Zhang Fangjian, Xu Jing, Ma Jianzhong, et al. Impact of crop residue burning on PM2.5 inorganic components in Beijing-Tianjin-Hebei and surrounding areas. J Appl Meteor Sci, 2019, 30(4): 467-478. DOI:  10.11898/1001-7313.20190407.

京津冀周边秸秆燃烧对PM2.5无机组分影响

DOI: 10.11898/1001-7313.20190407
资助项目: 

国家重点研究发展计划 2016YFC0202100

北京市重大科技项目 Z181100005418014

国家自然科学基金项目 41505110

详细信息
    通信作者:

    徐敬, 邮箱:jxu07@126.com

Impact of Crop Residue Burning on PM2.5 Inorganic Components in Beijing-Tianjin-Hebei and Surrounding Areas

  • 摘要: 华北平原是我国主要农作物产区,田间秸秆焚烧现象普遍存在,选取秋收季节(2014年10月)分析了秸秆燃烧的排放特征,利用区域化学传输模型WRF-Chem模拟研究了燃烧排放对气态前体物及其氧化产物的影响,以及最终导致的PM2.5中硫酸盐、硝酸盐和铵盐的变化。研究表明:2014年秋收季节,河南和山东等省份的秸秆燃烧排放会在东南风的输送作用下影响京津冀地区;秸秆燃烧排放大量挥发性有机物(VOCs),导致火点源及周边地区大气中主要氧化剂浓度上升,提升了区域大气氧化能力;当携带大量VOCs的秸秆燃烧烟羽与以化石燃料排放为主的城市气团相混合时,大气氧化性增强会加速城市地区人为源排放的NOx和SO2等气态前体物的氧化过程,提高硫酸盐和硝酸盐的形成速率、促进二次无机气溶胶的生成。
  • 图  1  模拟区域(蓝框为内层区域)及2014年10月MODIS火点分布(红点)(a), 秸秆燃烧源CO格点平均月排放量区域分布(b)

    Fig. 1  Modeling area(the blue frame) and spatial distributions of MODIS fire counts(red dots)(a), regional distribution of monthly mean CO emission load for each grid of straw burning(b) in Oct 2014

    图  2  SNA模拟浓度与观测浓度对比

    Fig. 2  Comparison between simulated and observed SNA

    图  3  2014年10月秸秆燃烧排放导致日间(07:00—18:00)地面RO2和HO2月平均浓度变化量区域分布

    Fig. 3  Regional distributions of monthly-averaged changes of surface RO2 and HO2 during the daytime(0700 BT-1800 BT) due to the straw burning in Oct 2014

    图  4  2014年10月秸秆燃烧排放导致NOx和SO2月平均浓度变化量区域分布

    Fig. 4  Regional distributions of monthly-averaged changes of surface NOx and SO2 due to the straw burning in Oct 2014

    图  5  2014年10月秸秆燃烧排放导致HNO3和S(Ⅵ)月平均浓度变化量区域分布

    Fig. 5  Regional distributions of monthly-averaged changes of surface HNO3 and hexavalent sulfur due to the straw burning in Oct 2014

    图  6  2014年10月秸秆燃烧排放导致SOR及NOR变化量月平均值的区域分布

    Fig. 6  Regional distributions of monthly-averaged changes of surface SOR and NOR due to the straw burning in Oct 2014

    图  7  2014年10月秸秆燃烧排放导致SNA月平均变化的区域分布

    Fig. 7  Regional distributions of monthly-averaged SNA changes due to the straw burning in Oct 2014

    表  1  模式内层区域主要污染物月排放量对比统计

    Table  1  Monthly emission statistics of major pollutants in the inner layer of the model

    污染物 人为排放 秸秆燃烧排放 秸秆燃烧排放占人为排放比例/%
    CO 4.9×106 t 1.2×105 t 2.4
    SO2 9.2×105 t 0.4×103 t 0.1
    NOx 1.03×106 t 6×103 t 0.6
    VOCs 8.1×109 mol 1.1×109 mol 14.0
    NH3 2.52×105 t 2.4×103 t 0.9
    OC 7.2×104 t 3.6×103 t 5.0
    BC 5.1×104 t 0.7×103 t 1.4
    PM2.5 3.6×105 t 6.3×103 t 1.8
    下载: 导出CSV

    表  2  气象要素模拟与观测小时平均值对比

    Table  2  Comparison of hourly mean values of meteorological elements between simulation and observation

    统计量 温度 相对湿度 风速
    有效数据对 46573 46428 42157
    观测平均值 287.6 K 64.1% 2.0 m·s-1
    模拟平均值 287.2 K 67.7% 3.6 m·s-1
    平均偏差 -0.48 K 3.6% 1.5 m·s-1
    归一化平均偏差 -0.002 0.057 0.7
    相关系数 0.9 0.6 0.6
    下载: 导出CSV

    表  3  地面NO2, SO2, PM2.5浓度模拟值与观测值对比

    Table  3  Comparison of NO2, SO2, PM2.5 between simulation and observation

    统计量 NO2 SO2 PM2.5
    有效数据对 3244 3180 3180
    观测平均值/(μg·m-3) 46.01 34.2 75.36
    模拟平均值/(μg·m-3) 44.99 46.71 77.21
    平均偏差/(μg·m-3) -1.02 12.51 1.86
    归一化平均偏差 -0.07 0.37 0.02
    相关系数 0.61 0.35 0.70
    下载: 导出CSV
  • [1] Andreae M O, Merlet P.Emission of trace gases and aerosols from biomass burning.Global Biogeochemical Cycles, 2001, 15(4):955-966. doi:  10.1029/2000GB001382
    [2] Crutzen P J, Andreae M O.Biomass burning in the tropics:Impact on atmospheric chemistry and biogeochemical cycles.Science, 1990, 250:1669-1678. doi:  10.1126/science.250.4988.1669
    [3] Zhang Y L, Cao F.Is it time to tackle PM2.5 air pollutions in China from biomass-burning emissions?Environmental Pollution, 2015, 202:217-219. doi:  10.1016/j.envpol.2015.02.005
    [4] Evangelista H, Maldonado J, GodoiR H M, et al.Sources and transport of urban and biomass burning aerosol black carbon at the South-West Atlantic Coast.Journal of Atmospheric Chemistry, 2007, 56(3):225-238. doi:  10.1007/s10874-006-9052-8
    [5] Decarlo P F, Ulbrich I M, Crounse J, et al.Investigation of the sources and processing of organic aerosol over the Central Mexican Plateau from aircraft measurements during MILAGRO.Atmospheric Chemistry And Physics, 2010, 10(12):5257-5280. doi:  10.5194/acp-10-5257-2010
    [6] Song Y, Zhang Y H, Xie S D, et al.Source apportionment of PM2.5 in Beijing by positive matrix factorization.Atmos Environ, 2006, 40(8):1526-1537. doi:  10.1016/j.atmosenv.2005.10.039
    [7] Zhang R, Jing J, Tao J, et al.Chemical characterization and source apportionment of PM2.5 in Beijing:Seasonal perspective.Atmospheric Chemistry and Physics, 2013, 13(14):7053-7074. doi:  10.5194/acp-13-7053-2013
    [8] Sun Y, Jiang Q, Xu Y, et al.Aerosol characterization over the North China Plain:Haze life cycle and biomass burning impacts in summer.J Geophys Res Atmos, 2016, 121(5):2508-2521. doi:  10.1002/2015JD024261
    [9] Cheng Z, Wang S, Fu X, et al.Impact of biomass burning on haze pollution in the Yangtze River delta, China:A case study in summer 2011.Atmospheric Chemistry and Physics, 2014, 14(9):4573-4585. doi:  10.5194/acp-14-4573-2014
    [10] Yamaji K, Li J, Uno I, et al.Impact of open crop residual burning on air quality over Central Eastern China during the Mount Tai Experiment 2006(MTX2006).Atmospheric Chemistry and Physics, 2010, 10(15):7353-7368. doi:  10.5194/acp-10-7353-2010
    [11] Buzcu B, Yue Z W, Fraser M P, et al.Secondary particle formation and evidence of heterogeneous chemistry during a wood smoke episode in Texas.J Geophys Res Atmos, 2006, 111(D10), DOI: 10.1029/2005jd006143.
    [12] Tian D, Hu Y T, Wang Y H, et al.Assessment of biomass burning emissions and their impacts on urban and regional PM2.5:A Georgia case study.Environ Sci Technol, 2009, 43(2):299-305. doi:  10.1021/es801827s
    [13] Zhou Y, Han Z, Liu R, et al.A Modeling study of the impact of crop residue burning on PM2.5 concentration in Beijing and Tianjin during a severe autumn haze event.Aerosol & Air Quality Research, 2018, 18(7):1558-1572. https://www.researchgate.net/publication/322638993_A_Modeling_Study_of_the_Impact_of_Crop_Residue_Burning_on_PM25_Concentration_in_Beijing_and_Tianjin_during_a_Severe_Autumn_Haze_Event
    [14] 徐晓斌.我国霾和光化学污染观测研究进展.应用气象学报, 2016, 27(5):604-619. http://qikan.camscma.cn/jams/ch/reader/view_abstract.aspx?file_no=20160509&flag=1
    [15] 颜鹏, 刘桂清, 周秀骥, 等.上甸子秋冬季雾霾期间气溶胶光学特性.应用气象学报, 2010, 21(3):257-265. doi:  10.3969/j.issn.1001-7313.2010.03.001
    [16] 靳军莉, 颜鹏, 马志强, 等.北京及周边地区2013年1-3月PM2.5变化特征.应用气象学报, 2014, 25(6):690-700. http://qikan.camscma.cn/jams/ch/reader/view_abstract.aspx?file_no=20140605&flag=1
    [17] 徐敬, 丁国安, 颜鹏, 等.北京地区PM2.5的成分特征及来源分析.应用气象学报, 2007, 18(5):645-654. doi:  10.3969/j.issn.1001-7313.2007.05.009
    [18] 张小曳, 张养梅, 曹国良.北京PM1中的化学组成及其控制对策思考.应用气象学报, 2012, 23(3):257-264. doi:  10.3969/j.issn.1001-7313.2012.03.001
    [19] 程兴宏, 徐祥德, 陈尊裕, 等.北京地区PM10浓度空间分布特征的综合变分分析.应用气象学报, 2007, 18(2):165-172. doi:  10.3969/j.issn.1001-7313.2007.02.005
    [20] 徐敬, 张小玲, 蔡旭晖, 等.基于敏感源分析的动态大气污染排放方案模拟.应用气象学报, 2016, 27(6):654-665. http://qikan.camscma.cn/jams/ch/reader/view_abstract.aspx?file_no=20160602&flag=1
    [21] Chen D, Liu Z Q, Fast J, et al.Simulations of sulfate-nitrate-ammonium (SNA) aerosols during the extreme haze events over northern China in October 2014.Atmospheric Chemistry and Physics, 2016, 16(16):10707-10724. doi:  10.5194/acp-16-10707-2016
    [22] Long X, Tie X X, Cao J J, et al.Impact of crop field burning and mountains on heavy haze in the North China Plain:A case study.Atmospheric Chemistry and Physics, 2016, 16(15):9675-9691. doi:  10.5194/acp-16-9675-2016
    [23] 方冬青, 魏永杰, 黄伟, 等.北京市2014年10月重霾污染特征及有机碳来源解析.环境科学研究, 2016, 29(1):12-19. http://d.old.wanfangdata.com.cn/Periodical/hjkxyj201601002
    [24] 王占山, 李云婷, 孙峰, 等.2014年10月上旬北京市大气重污染分析.中国环境科学, 2015, 35(6):1654-1663. doi:  10.3969/j.issn.1000-6923.2015.06.007
    [25] 何心河, 马建中, 徐敬, 等.2014年10月京津冀地区一次PM2.5污染过程的数值模拟.气象, 2016, 42(7):827-837. http://d.old.wanfangdata.com.cn/Periodical/qx201607006
    [26] 徐敬, 马志强, 赵秀娟, 等.边界层方案对华北低层O3垂直分布模拟的影响.应用气象学报, 2015, 26(5):567-577. http://qikan.camscma.cn/jams/ch/reader/view_abstract.aspx?file_no=20150506&flag=1
    [27] Zaveri R A, Peters L K.A new lumped structure photochemical mechanism for large-scale applications.J Geophys Res Atmos, 1999, 104(D23):30387-30415. doi:  10.1029/1999JD900876
    [28] Zaveri R A, Easter R C, Fast J D, et al.Model for Simulating Aerosol Interactions and Chemistry (MOSAIC).J Geophys Res Atmos, 2008, 113(D13), DOI: 10.1029/2007jd008782.
    [29] Zhang Q, Streets D G, Carmichael G R, et al.Asian emissions in 2006 for the NASA INTEX-B mission.Atmospheric Chemistry and Physics, 2009, 9(14):5131-5153. doi:  10.5194/acp-9-5131-2009
    [30] Wiedinmyer C, Akagi S K, Yokelson R J, et al.The fire inventory from NCAR (FINN):A high resolution global model to estimate the emissions from open burning.Geoscientific Model Development, 2011, 4(3):625-641. doi:  10.5194/gmd-4-625-2011
    [31] Hodzic A, Madronich S, Bohn B, et al.Wildfire particulate matter in Europe during summer 2003:Meso-scale modeling of smoke emissions, transport and radiative effects.Atmospheric Chemistry and Physics, 2007, 7(15):4043-4064. doi:  10.5194/acp-7-4043-2007
    [32] Li M, Wang T, Xie M, et al.Agricultural fire impacts on ozone photochemistry over the Yangtze River Delta region, East China.J Geophys Res Atmos, 2018, 123(12):6605-6623. doi:  10.1029/2018JD028582
    [33] Zhao P S, Chen Y N, Su J.Size-resolved carbonaceous components and water-soluble ions measurements of ambient aerosol in Beijing.Journal of Environmental Sciences, 2017, 54:298-313. doi:  10.1016/j.jes.2016.08.027
    [34] Zheng B, Tong D, Li M, et al.Trends in China's anthropogenic emissions since 2010 as the consequence of clean air actions.Atmospheric Chemistry and Physics, 2018, 18(19):14095-14111. doi:  10.5194/acp-18-14095-2018
    [35] Ma J Z, Wang W, Chen Y, et al.The IPAC-NC field campaign:A pollution and oxidization pool in the lower atmosphere over Huabei, China.Atmospheric Chemistry and Physics, 2012, 12(9):3883-3908. doi:  10.5194/acp-12-3883-2012
    [36] Wang S, Xing J, Jang C, et al.Impact assessment of ammonia emissions on inorganic aerosols in East China using response surface modeling technique.Environ Sci Technol, 2011, 45(21):293-300. http://www.wanfangdata.com.cn/details/detail.do?_type=perio&id=e04d2f5122614174061a269262d51b79
    [37] 周敏, 陈长虹, 王红丽, 等.上海市秋季典型大气高污染过程中颗粒物的化学组成变化特征.环境科学学报, 2012, 32(1):81-92. http://d.old.wanfangdata.com.cn/Periodical/hjkxxb201201011
  • 加载中
图(7) / 表(3)
计量
  • 摘要浏览量:  3896
  • HTML全文浏览量:  1364
  • PDF下载量:  30
  • 被引次数: 0
出版历程
  • 收稿日期:  2019-01-31
  • 修回日期:  2019-04-28
  • 刊出日期:  2019-07-31

目录

    /

    返回文章
    返回