留言板

尊敬的读者、作者、审稿人, 关于本刊的投稿、审稿、编辑和出版的任何问题, 您可以本页添加留言。我们将尽快给您答复。谢谢您的支持!

姓名
邮箱
手机号码
标题
留言内容
验证码

一次浙江对流云催化数值模拟试验

楼小凤 傅瑜 孙晶

楼小凤, 傅瑜, 孙晶. 一次浙江对流云催化数值模拟试验. 应用气象学报, 2019, 30(6): 665-676. DOI: 10.11898/1001-7313.20190603..
引用本文: 楼小凤, 傅瑜, 孙晶. 一次浙江对流云催化数值模拟试验. 应用气象学报, 2019, 30(6): 665-676. DOI: 10.11898/1001-7313.20190603.
Lou Xiaofeng, Fu Yu, Sun Jing. A numerical seeding simulation of convective precipitation in Zhejiang, China. J Appl Meteor Sci, 2019, 30(6): 665-676. DOI:  10.11898/1001-7313.20190603.
Citation: Lou Xiaofeng, Fu Yu, Sun Jing. A numerical seeding simulation of convective precipitation in Zhejiang, China. J Appl Meteor Sci, 2019, 30(6): 665-676. DOI:  10.11898/1001-7313.20190603.

一次浙江对流云催化数值模拟试验

DOI: 10.11898/1001-7313.20190603
资助项目: 

中国气象科学研究院基本科研业务费项目 2018KJ007

国家自然科学基金面上项目 41675137

国家重点研究发展计划 2018YFC1507901

中国气象科学研究院基本科研业务费项目 2019Z013

中国气象科学研究院基本科研业务费项目 2018Z009

详细信息
    通信作者:

    楼小凤, louxf@cma.gov.cn

A Numerical Seeding Simulation of Convective Precipitation in Zhejiang, China

  • 摘要: 为了研究吸湿性催化剂、碘化银催化剂及两者的联合催化效果,利用双参数三维对流云催化模式,对浙江南部一次对流云降雨过程分别进行盐粉暖云催化、碘化银冷云催化和冷暖混合催化试验,对比研究不同催化方案对对流云降雨的可能影响。结果表明:盐粉催化导致先增雨后减雨,主要通过盐溶滴与云滴碰并增长,及雨滴碰并和霰粒子碰冻过程消耗。在上升气流区和降雨前期进行催化的增雨效果更好,30 μm粒径的盐粉催化剂量为12.5/L时,可增加降雨量17.8%。在降雨过程的不同发展阶段进行AgI催化,表现出先减雨后增雨的催化效果。盐粉和碘化银的联合催化,由于两者催化效果的不同步,使得不同吸湿性催化剂和碘化银催化剂量配置会导致不同的催化效果。当30 μm的盐粉,催化剂量12.5/L,联合碘化银100/L的冷区催化,可取得19%的增雨效果。
  • 图  1  2016年9月1日模拟回波垂直剖面图(黑线表示温度,单位:℃)

    Fig. 1  Vertical section of simulated echo on 1 Sep 2016 (black line denotes temperature, unit:℃)

    图  2  模拟的流场、温度和云中水成物垂直分布(a)模拟第15分钟的云水(红线,单位:g·kg-1)、流场(白色箭头)、垂直速度(填色)、温度(黑线,单位:℃), (b)模拟第15 min的冰晶(蓝线,单位:g·kg-1)、雨水(绿线,单位:g·kg-1)、温度(黑线,单位:℃), (c)模拟第40分钟的云水(红线,单位:g·kg-1)、流场(白色箭头)、垂直速度(填色)、温度(黑线,单位:℃), (d)模拟第40分钟的冰晶(蓝线,单位:g·kg-1)、雨水(绿线,单位:g·kg-1)、霰(填色)、温度(黑线,单位:℃)

    Fig. 2  Vertical subsections of simulated vector, temperature and water substances (a)cloud water content (red line, unit:g·kg-1), vector (white arrow), vertical speed (the shaded), temperature (black line, unit:℃) at the 15th minute, (b)ice (the blue line, unit:g·kg-1), rain water (green line, unit:g·kg-1), temperature (black line, unit:℃) at the 15th minute, (c)cloud water content (red line, unit:g·kg-1), vector (white arrow), vertical speed (the shaded), temperature (black line, unit:℃) at the 40th minute, (d)ice (blue line, unit:g·kg-1), rain water (green line, unit:g·kg-1), graupel (the shaded), temperature (black line, unit:℃) at the 40th minute

    图  3  雨水的源项(a)和降雨量(b)随时间分布

    Fig. 3  Time series of rainwater source terms(a) and precipitation(b)

    图  4  催化部位和拟降水分布(a)模拟区域(黑色方框)和模拟云水(红线,单位:g·kg-1)、垂直速度(填色)、温度(绿线,单位:℃)分布,(b)不同盐粉粒径和小催化剂量下2 min降雨随时间分布,(c)不同盐粉粒径和大催化剂量下2 min降雨随时间分布

    Fig. 4  Seeding location and precipitation distribution (a)seeding area (black box) and subsections of simulated cloud water (red line, unit:g·kg-1), vertical speed (the shaded), temperature (green line, unit:℃), (b)time series of precipitation within 2 min with different salt particle size and small seeding rates, (c)time series of precipitation within 2 min with different salt particle size and big seeding rates

    图  5  模拟第32分钟时水成物、盐溶滴分布和主要微物理过程(a)模拟云水(红线,单位:g·kg-1)、雨水(蓝线,单位:g·kg-1)、霰(绿线,单位:g·kg-1)、盐溶滴(填色)垂直剖面,(b)模拟云水(红线,单位:g·kg-1)、雨水(蓝线,单位:g·kg-1)、霰(绿线,单位:g·kg-1)、盐溶滴(填色)水平分布,(c)盐粉与其他水成物之间的微物理过程随时间变化

    Fig. 5  Subsection of simulated water substances, salt resolved water and main microphysical processes at the 32nd minute (a)the vertical section of simulated cloud water (red line, unit:g·kg-1), rainwater (blue line, unit:g·kg-1), graupel (green line, unit:g·kg-1), salt resolved water (the shaded), (b)the horizontal distribution of simulated cloud water (red line, unit:g·kg-1), rainwater (blue line, unit:g·kg-1), graupel (green line, unit:g·kg-1), salt resolved water (the shaded), (c)time series of microphysical processes between salt resolved drops and other water substances

    图  6  催化部位和模拟降雨分布(a)催化区域(黑色方框)和模拟云水(红线,单位:g·kg-1)、垂直速度(填色)、温度(绿线,单位:℃)分布,(b)不同催化高度下2 min降雨量随时间分布

    Fig. 6  Seeding location and precipitation distribution (a)seeding area (black box) and subsections of simulated cloud water (red line, unit:g·kg-1), vertical speed (the shaded), temperature (green line, unit:℃), (b)time series of precipitation within 2 min at different seeding level (unit:kt)

    图  7  不同催化开始时间2 min累积降雨量随时间变化

    Fig. 7  Precipitation within 2 min with different seeding start time (unit:kt)

    图  8  催化部位和模拟降雨分布(a)碘化银催化区域(黑色方框)和模拟云水(红线,单位:g·kg-1)、垂直速度(填色)、温度(绿线,单位:℃),(b)不同催化剂量下2 min降雨量随时间分布

    Fig. 8  Seeding location and precipitation distribution (a)seeding area (black box) and subsections of simulated cloud water (red line, unit:g·kg-1), vertical speed (the shaded), temperature (green line, unit:℃), (b)time series of precipitation within 2 min with different seeding rates

    图  9  自然云和催化云的云中水成物随时间分布

    Fig. 9  Time series of unseeded and seeded water substances

    图  10  催化部位和模拟降雨分布(a)催化区域(黑色方框)和模拟云水(红线,单位:g·kg-1)、垂直速度(填色)、温度(绿线,单位:℃),(b)不同催化方案下2 min降雨量随时间分布

    Fig. 10  Seeding location and precipitation distribution (a)seeding area (black box) and subsections of simulated cloud water (red line, unit:g·kg-1), vertical speed (the shaded), temperature (green line, unit:℃), (b)time series of rainfall within 2 min with different seeding schemes

  • [1] 李大山.人工影响天气现状与展望.北京:气象出版社, 2002.
    [2] 郑国光, 郭学良.人工影响天气科学技术现状及发展趋势.中国工程科学, 2012, 14(9):20-27. http://d.old.wanfangdata.com.cn/Periodical/zggckx201209003
    [3] 苏正军, 郑国光, 酆大雄.吸湿性物质催化云雨的研究进展.高原气象, 2009, 28(1):227-232. http://d.old.wanfangdata.com.cn/Periodical/gyqx200901029
    [4] Koenig L R, Murray F W.Theoretical experiments on cumulus dynamics.J Atmos Sci, 1983, 40:1241-1256. doi:  10.1175/1520-0469(1983)040<1241:TEOCD>2.0.CO;2
    [5] Levy G, Cotton W R.A numerical investigation of mechanisms linking glaciation of the ice-phase to the boundary layer.J Climate Appl Meteor, 1984, 23:1505-1519. doi:  10.1175/1520-0450(1984)023<1505:ANIOML>2.0.CO;2
    [6] Xue L L, Hashimoto A, Murakami M, et al.Implementation of a silver iodide cloud-seeding parameterization in WRF.Part Ⅰ:Model description and idealized 2D sensitivity tests.J Appl Meteor Climatol, 2013, 52:1433-1457, DOI: 10.1175/JAMC-D-12-0148.1.
    [7] Xue L L, Tessendorf S A, Nelson E, et al.Implementation of a silver iodide cloud-seeding parameterization in WRF.Part Ⅱ:3D simulations of actual seeding events and sensitivity tests.J Appl Meteor Climatol, 2013, 52:1458-1476, DOI: 10.1175/JAMC-D-12-0149.1.
    [8] 何观芳, 胡志晋.人工影响积雨云机制的数值研究.应用气象学报, 1991, 2(1):32-39. http://qikan.camscma.cn/jamsweb/article/id/19910104
    [9] 洪延超.三维冰雹云催化数值模式.气象学报, 1998, 56(6):641-653. http://www.wanfangdata.com.cn/details/detail.do?_type=perio&id=qxxb200506005
    [10] 洪延超.冰雹形成机制和催化防雹机制研究.气象学报, 1999, 57(1):30-44. doi:  10.1209-0295-5075-95-17005/
    [11] 刘诗军, 胡志晋, 游来光.碘化银核化过程的数值模拟研究.气象学报, 2005, 63(1):30-40. http://d.old.wanfangdata.com.cn/Periodical/qxxb200501004
    [12] 于达维, 何观芳, 周勇, 等.三维对流云催化模式及其外场试用.应用气象学报, 2001, 12(增刊Ⅰ):122-132. http://d.old.wanfangdata.com.cn/Periodical/yyqxxb2001z1016
    [13] 楼小凤, 孙晶, 史月琴, 等.减弱对流云降水的AgI催化原理的数值模拟研究.气象学报, 2014, 72(4):782-793. http://d.old.wanfangdata.com.cn/Periodical/qxxb201404012
    [14] 楼小凤, 师宇, 卢广献.一次降雹过程的AgI系列催化模拟研究.应用气象学报, 2016, 27(2):129-139. doi:  10.11898/1001-7313.20160201
    [15] Guo X L, Zheng G G, Jin D Z.A numerical comparison study of cloud seeding by silver iodide and liquid carbon dioxide.Atmos Res, 2006, 79:183-226. doi:  10.1016/j.atmosres.2005.04.005
    [16] Guo X L, Fu D H, Zheng G G.Modeling study on optimal convective cloud seeding in rain augmentation.J Korean Meteor Soc, 2007, 43:273-284. http://cn.bing.com/academic/profile?id=d50aae5a1fef34e1b39dd58ccb764845&encoded=0&v=paper_preview&mkt=zh-cn
    [17] 史月琴, 楼小凤, 邓雪娇, 等.华南冷锋云系的人工引晶催化数值试验.大气科学, 2008, 32(6):1256-1275. http://d.old.wanfangdata.com.cn/Periodical/daqikx200806003
    [18] 孙晶, 史月琴, 楼小凤, 等.人工缓减梅雨锋暴雨的数值试验.大气科学, 2010, 34(2):337-350. http://d.old.wanfangdata.com.cn/Periodical/daqikx201002008
    [19] 方春刚, 郭学良, 王盘兴.碘化银播撒对云和降水影响的中尺度数值模拟研究.大气科学, 2009, 33(3):621-633. http://d.old.wanfangdata.com.cn/Periodical/daqikx200903018
    [20] 何晖, 金华, 李宏宇, 等.2008年奥运会开幕式日人工消减雨作业中尺度数值模拟的初步结果.气候与环境研究, 2012, 17(1):46-58. doi:  10.3878/j.issn.1006-9585.2011.10043
    [21] 何晖, 高茜, 李宏宇.北京层状云人工增雨数值模拟试验和机理研究.大气科学, 2013, 37(4):905-922. http://d.old.wanfangdata.com.cn/Periodical/daqikx201304012
    [22] 刘卫国, 陶玥, 党娟, 等.2014年春季华北两次降水过程的人工增雨催化数值模拟研究.大气科学, 2016, 40(4):669-688. http://d.old.wanfangdata.com.cn/Periodical/daqikx201604002
    [23] Rosenfeld D, Axisa D, Woodley W L, et al.A quest for effective hygroscopic cloud seeding.J Appl Meteorol Clim, 2010, 49:1548-1562. doi:  10.1175/2010JAMC2307.1
    [24] 顾震潮, 陈炎涓, 徐乃璋, 等.南岳云雾降水物理观测(1960年3-8月)结果的初步分析.我国云雾降水微物理特征问题.北京:科学出版社, 1962:2-21.
    [25] 马培民, 孙奕敏, 赵瑞华, 等.1963年夏季湖南盐粉催化浓积云降水试验效果的分析.气象学报, 1965, 35(3):280-291. http://www.cnki.com.cn/Article/CJFDTotal-QXXB196503002.htm
    [26] 王伟民, 卢伟, 黄培强, 等.几种消暖云(雾)催化剂的试验研究.气象科学, 2000, 20(3):478-486. http://www.wanfangdata.com.cn/details/detail.do?_type=perio&id=qxkx200004006
    [27] 党娟, 苏正军, 房文, 等.几种粉末型吸湿性催化剂的试验研究.气象科技, 2017, 45(2):398-404. http://d.old.wanfangdata.com.cn/Periodical/qxkj201702026
    [28] 姚展予.中国气象科学研究院人工影响天气研究进展回顾.应用气象学报, 2006, 17(6):786-795. http://qikan.camscma.cn/jamsweb/article/id/200606127
    [29] 徐华英, 郝京甫.盐粉催化积云降水的数值模拟.大气科学, 1983, 7(4):403-410. http://www.cnki.com.cn/Article/CJFDTotal-DQXK198304006.htm
    [30] 胡志晋, 严采蘩, 王玉彬.层状暖云降雨及其催化的数值模拟.气象学报, 1983, 41(1):79-88. http://www.cnki.com.cn/Article/CJFDTotal-QXXB198301008.htm
    [31] 胡志晋, 严采蘩.盐粉催化不同生命史的浓积云的数值模拟.大气科学, 1985, 9(1):62-72. http://www.cnki.com.cn/Article/CJFDTotal-DQXK198501007.htm
    [32] 楼小凤, 何观芳, 胡志晋, 等.三维对流云盐粉催化模式的发展和催化模拟实验.高原气象, 2013, 32(2):491-500. http://www.cnki.com.cn/Article/CJFDTotal-GYQX201302016.htm
    [33] 樊志超, 周盛, 汪玲, 等.湖南秋季积层混合云系飞机人工增雨作业方法.应用气象学报, 2018, 29(2):200-216. doi:  10.11898/1001-7313.20180207
    [34] 蒋年冲, 吴必文, 袁野, 等.江淮地区对流云人工增雨技术研究基地的可行性分析.应用气象学报, 2003, 14(增刊Ⅰ):151-155. http://d.old.wanfangdata.com.cn/Periodical/yyqxxb2003Z1018
    [35] 胡雯, 申宜运, 曾光平.南方夏季对流云人工增雨技术研究.应用气象学报, 2005, 16(3):413-416. http://qikan.camscma.cn/jamsweb/article/id/20050351
    [36] 曾光平, 吴明林.古田水库人工降雨效果的综合评价.应用气象学报, 1993, 4(2):154-161. http://qikan.camscma.cn/jamsweb/article/id/19930229
    [37] Dennis A S, Koscielski A.Results of a randomized cloud seeding experiment in South Dakota.J Appl Meteor, 1969, 8(4):556-565. doi:  10.1175/1520-0450(1969)008<0556:ROARCS>2.0.CO;2
    [38] 叶家东, 范蓓芬, 杜京朝.人工增雨试验中的反效果问题.应用气象学报, 1998, 9(3):336-344. http://qikan.camscma.cn/jamsweb/article/id/19980348
    [39] Orville H D, Koop F J, Farley R D, et al.The Numerical Modeling of Ice-phase Cloud Seeding Effects in a Warm-base Cloud.Cloud Physics and Weather Modification Research Program, WMO/TD, 1989, 269:203-207.
    [40] 王春明, 叶家东, 魏绍远.气溶胶对暖雨过程影响的数值模拟试验//第12次全云降水物理和人工影响天气科学讨论会.中国气象学会学术会议文集, 1996, 79.
    [41] 胡志晋, 何观芳.积雨云微物理过程的数值模拟(一)微物理模式.气象学报, 1987, 45(4):465-484. http://www.cnki.com.cn/Article/CJFDTotal-QXXB198704011.htm
    [42] 邹光源.三维准弹性对流云模式.北京:中国气象科学研究院, 1991.
    [43] DeMott P J.Quantitative descriptions of ice formation mechanisms of silver iodide type aerosols.Atmos Res, 1995, 38, 63-99. doi:  10.1016/0169-8095(94)00088-U
  • 加载中
图(10)
计量
  • 摘要浏览量:  3523
  • HTML全文浏览量:  1998
  • PDF下载量:  85
  • 被引次数: 0
出版历程
  • 收稿日期:  2019-07-15
  • 修回日期:  2019-10-30
  • 刊出日期:  2019-11-30

目录

    /

    返回文章
    返回