Characteristics of Hailstone Distribution Based on Disaster Information in Beijing from 1981 to 2017
-
摘要: 该文对1981—2017年北京地区1010个高精度冰雹灾情信息进行统计分析。从年代际变化看,1981—1990年平均降雹日数为10 d,1991—2000年和2001—2010年年平均降雹日数均有所减少(5.67 d和4.33 d),而从2011年起,年平均降雹日数急剧增加到21 d。1981—1995年年平均最大冰雹直径总体呈增加趋势,2002年开始总体较小。从年变化看,冰雹日数的年变化呈明显的单峰型即初夏峰型,4月起降雹日数逐渐增加并在6月达到峰值,其后缓慢下降。从空间分布看,北京地区的降雹分布十分广泛,但高频次降雹区域主要集中在北京西北部延庆区,平均每年至少发生两次降雹,此外降雹高值区还出现在城区的海淀区。2010年后,降雹范围明显增大,同时降雹分布也由相对集中变为相对均匀。Abstract: Fine analysis on the variation of temporal and spatial distributions of hail day, frequency and size is very important for risk evaluation and hail suppression. The hailstone disaster information with high spatial resolution can be used to provide database for analyzing characteristics and patterns of hail distribution. After meshing the hailstone disaster information in Beijing into a gridded database, the following results are summarized by analyzing 1010 cases of hail disaster information in Beijing during 1981-2017. The number of annual averaged hail days during 1981-1990 is 10 days, which is relatively more than that during 1991-2000 and 2001-2010, while the number increases to 21 days from 2011 to 2017. The annual averaged maximum hail diameter increases from 1981 to 1995, and then decreases since 2002. It is significant that the monthly variation of hail days is unimodal distributed. Hail days increase gradually from April and reach the peak in June, and then decline slowly. The average monthly hail days during 2011-2017 are higher than those in other periods, and the average monthly hail days during 2001-2010 are generally low. The difference of maximum hail diameter in each month is not obvious, as far as the difference between different ages, the monthly maximum hail diameter during 1981-1990 increased first and then decreased, while the value during 1991-2000 is larger in general. Hails occur most frequently in the afternoon in Beijing. The daily variation of hail days during 1981-1990 and 1991-2000 show obvious single peak characteristics, but the frequency drops significantly from 2001 to 2010. The frequency of hails from 1400 BT to 2100 BT during 2011-2017 is stable and much higher than that in 1991-2000 and 2001-2010. At the same time, it is also observed that hails occurring at night during 2011-2017 are also higher. It is obvious that hailstorms are widely distributed in Beijing. The maximum hail frequency of horizontal distribution is the highest in 1981-1990, and then decreases gradually, but recovers during 2011-2017. During 1981-1990 and 2001-2010, the hail frequency in Yanqing District, northwest of Beijing is the highest, and Haidian District is another high hail frequency area in Beijing downtown. From 2011 to 2017, the distribution of hailstorms is relatively uniform. Combining the information of hail disaster with other related data, and causes for this spatial and temporal distribution variation will be investigated.
-
表 1 灾情信息对应的冰雹直径估算
Table 1 Approximate hailstone diameter interpreted from disaster information
信息描述 估算直径/mm 乒乓球 40 核桃 40 葡萄 20 枣 20 卫生球 20 蚕豆粒 15 杏核 15 花生米 10 玉米粒 8 豌豆粒 8 黄豆粒 8 绿豆 5 米粒 5 -
[1] Punge H J, Kunz M.Hail observations and hailstorm characteristics in Europe:A review.Atmos Res, 2016, 176:159-184. http://cn.bing.com/academic/profile?id=662474cba2c2d7f0864c7c927ebbc967&encoded=0&v=paper_preview&mkt=zh-cn [2] Prohaska K.Über Gewitter und Hagelschläge in Steiermark, Kärnten und Oberkrain.Mitt Nat Ver Steiermark, 1902, 38:49-84. [3] Müller W.Hail Climatology in Stuttgart Area//Proceedings of the 2nd Int Symp on Hail Suppression.1987. [4] Berthet C, Dessens J, Sanchez J L.Regional and yearly variations of hail frequency and intensity in France.Atmos Res, 2011, 100:391-400. doi: 10.1016/j.atmosres.2010.10.008 [5] Cintineo J L, Smith T M, Lakshmanan V, et al.An objective high-resolution hail climatology of the Contiguous United States.Wea Forecasting, 2012, 27:1235-1248. doi: 10.1175/WAF-D-11-00151.1 [6] Suwa'la K, Bednorz E.Climatology of hail in Central Europe.Quaestiones Geographicae, 2013, 32:99-110. doi: 10.2478/quageo-2013-0025 [7] Frisby E M, Sansom H W.Hail incidence in the tropics.J Appl Meteor, 1967, 6(2):339-354. doi: 10.1175/1520-0450(1967)006<0339:HIITT>2.0.CO;2 [8] Tuovinen J P, Punkka A J, Rauhala J, et al.Climatology of severe hail in Finland:1930-2006.Mon Wea Rev, 2009, 137:2238-2249. doi: 10.1175/2008MWR2707.1 [9] Dotzek N, Groenemeijer P, Feuerstein B, et al.Overview of ESSL's severe convective storms research using the European Severe Weather Database ESWD.Atmos Res, 2009, 93:575-586. doi: 10.1016/j.atmosres.2008.10.020 [10] 刘全根, 汤懋苍.中国降雹的气候特征.地理学报, 1966, 32(1):48-65. http://en.cnki.com.cn/Article_en/CJFDTOTAL-DLXB196601003.htm [11] 张芳华, 高辉.中国冰雹日数的时空分布特征.南京气象学院学报, 2008, 31(5):687-693. http://d.old.wanfangdata.com.cn/Periodical/njqxxyxb200805011 [12] 曹治强, 王新泉.与强对流相联系的云系特征和天气背景.应用气象学报, 2013, 24(3):365-372. http://qikan.camscma.cn/jamsweb/article/id/20130313 [13] Li M, Zhang Q, Zhang F.Hail day frequency trends and associated atmospheric circulation patterns over China during 1960-2012.J Climate, 2016, 29:7027-7044. doi: 10.1175/JCLI-D-15-0500.1 [14] Zhang Q, Ni X, Zhang F.Decreasing trend in severe weather occurrence over China during the past 50 years.Scientific Reports, 2017, 7:42310. doi: 10.1038/srep42310 [15] Ni X, Zhang Q, Liu C, et al.Decreased hail size in China since 1980.Scientific Reports, 2017, 7:10913. doi: 10.1038/s41598-017-11395-7 [16] Li M, Zhang D L, Sun J, et al.A statistical analysis of hail events and their environmental conditions in China during 2008-2015.J Applied Meteor Climatol, 2018, 57:2817-2833. doi: 10.1175/JAMC-D-18-0109.1 [17] 赵燕生.江苏省冰雹天气气候分析.气象科学, 1982, 2(增刊Ⅰ):140-146. http://www.wanfangdata.com.cn/details/detail.do?_type=perio&id=qxkx198201013 [18] 李英, 段旭.湿位涡在云南冰雹天气分析中的应用.应用气象学报, 2000, 11(2):242-248. doi: 10.3969/j.issn.1001-7313.2000.02.015 [19] 纪晓玲, 马筛艳, 丁永红, 等.宁夏40年灾害性冰雹天气分析.自然灾害学报, 2007, 16(3):24-28. http://d.old.wanfangdata.com.cn/Periodical/zrzhxb200703005 [20] 王瑾, 刘黎平.基于GIS的贵州省冰雹分布与地形因子关系分析.应用气象学报, 2008, 19(5):627-634. http://qikan.camscma.cn/jamsweb/article/id/20080515 [21] 蔡义勇, 王宏, 余永江.福建省冰雹时空分布与天气气候特征分析.自然灾害学报, 2009, 18(4):43-48. http://d.old.wanfangdata.com.cn/Periodical/zrzhxb200904008 [22] 刘晓璐, 刘建西, 张世林, 等.基于探空资料因子组合分析方法的冰雹预报.应用气象学报, 2014, 25(2):168-175. http://qikan.camscma.cn/jamsweb/article/id/20140206 [23] 石宝灵, 王红艳, 刘黎平.云南多普勒天气雷达网探测冰雹的覆盖能力.应用气象学报, 2018, 29(3):16-27. doi: 10.11898/1001-7313.20180302 [24] 叶彩华, 姜会飞, 李楠, 等.北京地区冰雹发生的时空分布特征.中国农业大学学报, 2007, 12(5):34-40. http://d.old.wanfangdata.com.cn/Periodical/zgnydxxb200705007 [25] 扈海波, 董鹏捷, 潘进军.基于灾损评估的北京地区冰雹灾害风险区划.应用气象学报, 2011, 22(5):612-620. http://qikan.camscma.cn/jamsweb/article/id/20110512 [26] 闵晶晶, 曹晓钟, 段宇辉, 等.近30年京津冀地区冰雹的气候特征和突变分析.气象, 2012, 38(2):189-196. http://d.old.wanfangdata.com.cn/Conference/8188371 [27] 张琳娜, 郭锐, 何娜, 等.北京地区冰雹天气特征.气象科技, 2013, 41(1):114-120. http://d.old.wanfangdata.com.cn/Periodical/qxkj201301022 [28] 张秉祥, 李国翠, 刘黎平, 等.基于模糊逻辑的冰雹天气雷达识别算法.应用气象学报, 2014, 25(4):415-426. http://qikan.camscma.cn/jamsweb/article/id/20140404 [29] 蓝渝, 郑永光, 毛冬艳, 等.华北区域冰雹天气分型及云系特征.应用气象学报, 2014, 25(5):538-549. http://qikan.camscma.cn/jamsweb/article/id/20140503 [30] 郑永光, 周康辉, 盛杰, 等.强对流天气监测预报预警技术进展.应用气象学报, 2015, 26(6):641-657. doi: 10.11898/1001-7313.20150601 [31] Li X, Zhang Q, Zou T, et al.Climatology of hail frequency and size in China, 1980-2015.J Applied Meteor Climatol, 2018, 57:875-887. doi: 10.1175/JAMC-D-17-0208.1 [32] 许焕斌, 段英.冰雹形成机制的研究并论人工雹胚与自然雹胚的"利益竞争"防雹假说.大气科学, 2001, 25(2):277-288. http://www.wanfangdata.com.cn/details/detail.do?_type=perio&id=daqikx200102014