Occurrence Characteristics of Early Rice Heat Disaster in Jiangxi Province
-
摘要: 以江西早稻为例,利用1981—2016年气象资料、早稻高温热害灾情史料和生育期资料,构建历史早稻高温热害样本集合,在Kolmogorov-Smirnov(K-S)分布拟合检验的基础上,采用信息扩散方法计算得到早稻高温热害总样本和不同持续日数(3~5 d,6~8 d和8 d以上)不同等级(轻度、中度、重度)热害在早稻抽穗期前后的发生概率。结果表明:早稻高温热害起始于抽穗前6 d至抽穗后20 d,抽穗扬花期发生概率最高,随着早稻进入乳熟期高温热害发生概率逐渐降低。早稻抽穗扬花期持续3~5 d早稻高温热害以轻度、中度为主,5 d以上中度、重度高温热害发生概率为98.77%;随着早稻进入乳熟期,高温热害以中度和轻度为主,重度高温热害概率显著降低。早稻轻度高温热害的主要致灾时段为抽穗至灌浆中期,中度高温热害的主要致灾时段为抽穗至灌浆中前期,而重度高温热害的主要致灾时段为孕穗期至灌浆初期。Abstract: Increasing of extreme hot weather has been witnessed in China in the past several decades. Rice is generally considered to be seriously threatened by hot weather, especial frequent occurrences of extreme hot weather. Though the rice heat disaster is widely studied, researches on temporal characteristics of early rice heat are lacking. It is of great merit to explore the rice heat-lead characteristics of hot weather processes, and highlight the particular period severely hit by rice heat to provide support for rice heat monitoring, prevention, and mitigation. Therefore, maximum temperature, disaster and phenological data on rice in Jiangxi are integrated to construct the historical early rice heat samples from 1981 to 2016. Nine sets of rice heat samples are built in the context of combinations of different hot weather duration (3-5 d, 6-8 d and more than 8 d) and heat levels (light, moderate and severe). Afterwards, Kolmogorov-Smirnov (K-S) and information diffusion method are adopted to analyze starting and ending dates of rice heat and their orders comparing with heading, and to explore rice heat occurring possibility and characteristics of rice heat in different level. Results show that the occurrence time of heat disaster is approximately 6 d before heading stage to 20 d after heading stage. It is with great possibility of 36.73% for heat disaster to start in 1-5 d after heading and 18.37% in -4 d-0 before heading and 6-10 d after heading. Effects of high temperature on early rice gradually decrease as the mature stage starts, with 5.61% rice heat occurring in 15 d after rice heading. The probability of moderate and light heat damage is more than 80% when 3-5 d of hot weather occurs and increases to 98.77% when more than 5 d of hot weather occurs during heading-flowering stage. It is identified that light rice heat mainly occurs in 3-17 d after heading, moderate rice heat occurs in 2-12 d after heading and severe rice heat occurs 2 d before heading and 9 d after heading. Converting to early rice phenological data, the above is concluded that major occurrence periods for light rice heat is from heading to mid-grouting stage, moderate rice heat in stage of heading to early-mid grouting and severe rice heat from booting to early grouting stage.
-
表 1 早稻高温热害样本量信息
Table 1 Quantity information of early rice heat disaster samples
热害等级 3~5 d 6~8 d 8 d以上 轻度 19 7 10 中度 25 22 19 重度 7 13 74 表 2 不同持续日数、不同等级早稻高温热害样本信息
Table 2 Information of early rice heat level and hot weather duration combinations
持续日数 热害等级 起始日 结束日 最早/d 最晚/d 平均/d 最早/d 最晚/d 平均/d 3~5 d 轻度 -1 20 9.6 3 23 12.3 中度 -5 16 7.2 -3 19 10.0 重度 0 13 5.4 2 16 8.0 6~8 d 轻度 13 18 15.7 18 23 21.0 中度 -5 18 7.3 0 22 12.9 重度 -4 13 4.9 1 20 10.8 8 d以上 轻度 11 14 12.4 19 22 20.7 中度 -2 11 5.1 6 23 15.6 重度 -6 13 1.2 2 20 11.9 表 3 早稻抽穗前后不同持续日数高温热害百分比(单位:%)
Table 3 Proportions of different duration (3~5 d, 6~8 d and more than 8 d) rice heat disaster in different range of days before or after heading (unit:%)
距抽穗日数/d
(起始日)持续日数 3~5 d 6~8 d 8 d以上 -9~-5 16.66 16.67 66.67 -4~0 16.67 13.89 69.44 1~5 18.05 13.89 68.06 6~10 38.89 27.78 33.33 11~15 31.43 31.43 37.14 16~20 54.55 45.45 0 表 4 20%, 50%和80%累积概率的早稻高温热害起始日、结束日距抽穗期日数(单位:d)
Table 4 The starting and ending calendars of rice heat (demonstrated by days before or after heading) with cumulative probability of 20%, 50% and 80% (unit:d)
持续日数 热害等级 累积概率 开始日 结束日 20% 50% 80% 20% 50% 80% 3~5 d 轻度 3.2 9.6 16.0 5.8 12.3 18.7 中度 2.5 7.2 11.9 4.9 10.0 15.2 重度 1.5 5.4 9.4 3.7 8.0 12.3 6~8 d 轻度 14.2 15.7 17.2 19.6 21.0 22.4 中度 2.2 7.3 12.3 7.7 12.9 18.2 重度 0.7 4.9 9.0 6.1 10.8 15.5 8 d以上 轻度 11.0 12.4 13.8 19.2 20.7 22.2 中度 1.9 5.1 8.4 11.7 15.6 19.5 重度 -2.1 1.2 4.5 8.2 11.9 15.6 -
[1] 王玉洁, 周波涛, 任玉玉, 等.全球气候变化对我国气候安全影响的思考.应用气象学报, 2016, 27(6):750-758. doi: 10.11898/1001-7313.20160612 [2] Aggarwal P K, Mall R K.Climate change and rice yields in diverse agro-environments of India.Ⅱ.Effect of uncertainties in scenarios and crop models on impact assessment.Climate Change, 2002, 52(3):331-343. doi: 10.1023/A:1013714506779 [3] Ishimaru T, Xaiyalath S, Nallathambi J, et al.Quantifying rice spikelet sterility in potential heat-vulnerable regions:Field surveys in Laos and southern India.Field Crop Res, 2016, 190:3-9. doi: 10.1016/j.fcr.2015.08.006 [4] Matsushima S, Ikewada H, Maeda A, et al.Studies on rice cultivation in the tropics.Jpn J Crop Sci, 1983, 27(2):98-106. [5] Osada A, Sasiprapa V, Rahong M, et al.Abnormal occurrence of empty grains of India rice plants in the dry, hot season in Thailand.Jpn J Crop Sci, 1973, 42(1):103-109. doi: 10.1626/jcs.42.103 [6] Wang Y W, Zhai P M, Tian H.Extreme high temperatures in southern China in 2003 under the background of climate change.Meteorological Monthly, 2006, 32(10):27-33. http://www.wanfangdata.com.cn/details/detail.do?_type=perio&id=qx200610004 [7] Wassmann R, Jagadish S, Heuer S, et al.Climate change affecting rice production: the physiological and agronomic basis for possible adaptation strategies.Adv Agron, 2009, 101(8):59-122. doi: 10.1016-S0065-2113(08)00802-X/ [8] 中华人民共和国国家统计局.中国统计年鉴(2017).北京:中国统计出版社, 2017. [9] 王春乙.中国重大农业气象灾害研究.北京:气象出版社, 2010. [10] 王才林, 仲维功.高温对水稻结实率的影响及其防御对策.江苏农业科学, 2004, 32(1):15-18. doi: 10.3969/j.issn.1002-1302.2004.01.005 [11] 王志刚, 王磊, 林海, 等.水稻高温热害及耐热性研究进展.中国稻米, 2013, 19(1):27-31. doi: 10.3969/j.issn.1006-8082.2013.01.007 [12] Sun T, Hasegawa T, Tang L, et al.Stage-dependent temperature sensitivity function predicts seed-setting rates under short-term extreme heat stress in rice.Agric For Meteorol, 2018, 15:196-206. http://www.wanfangdata.com.cn/details/detail.do?_type=perio&id=16bf879c3ca3bb917d9bf0c0fc81700d [13] 姚凤梅, 张佳华.1981—2000年水稻生长季相对极端高温事件及其气候风险的变化.自然灾害学报, 2009, 18(4):37-42. doi: 10.3969/j.issn.1004-4574.2009.04.007 [14] Rezaei E E, Webber H, Gaiser T, et al.Heat stress in cereals: Mechanisms and modelling.Eur J Agron, 2015, 64:98-113. doi: 10.1016/j.eja.2014.10.003 [15] Wheeler T R, Craufurd P Q, Ellis R H, et al.Temperaturem variability and the yield of annual crops.Agr Ecosys Environ, 2000, 82:159-167. doi: 10.1016/S0167-8809(00)00224-3 [16] Wang P, Zhang Z, Chen Y, et al.How much yield loss has been caused by extreme temperature stress to the irrigated rice production in China?Climatic Change, 2016, 134(4):635-650. doi: 10.1007/s10584-015-1545-5 [17] 朱珠, 陶福禄, 娄运生.1980-2009年江苏省气温变化特征及水稻高温热害变化规律.江苏农业科学, 2013, 41(6):311-315. doi: 10.3969/j.issn.1002-1302.2013.06.112 [18] 谢晓金, 李秉柏, 王琳, 等.长江中下游地区高温时空分布及水稻花期的避害对策.中国农业气象, 2010, 31(1):144-150. doi: 10.3969/j.issn.1000-6362.2010.01.028 [19] 杨太明, 孙喜波, 刘布春, 等.安徽省水稻高温热害保险天气指数模型设计.中国农业气象, 2015, 36(2):220-226. doi: 10.3969/j.issn.1000-6362.2015.02.013 [20] Zhang L, Yang B, Li S, et al.Potential rice exposure to heat stress along the yangtze river in china under rcp8.5 scenario.Agric For Meteorol, 2018, 248:185-196. doi: 10.1016/j.agrformet.2017.09.020 [21] Zhang Z, Wang P, Chen Y, et al.Global warming over 1960-2009 did increase heat stress and reduce cold stress in the major rice-planting areas across China.Eur J Agron, 2014, 59:49-56. doi: 10.1016/j.eja.2014.05.008 [22] 任义方, 高苹, 林磊, 等.水稻高温热害气象风险区划和评估.自然灾害学报, 2017, 26(5):64-72. http://www.wanfangdata.com.cn/details/detail.do?_type=perio&id=zrzhxb201705008 [23] 冯明, 刘安国, 吴义城, 等.主要农作物高温危害温度指标(GBT 21985-2008).2008. [24] 田俊, 崔海建.江西省双季早稻灌浆乳熟期高温热害影响评估.中国农业气象, 2015, 36(1):67-73. doi: 10.3969/j.issn.1000-6362.2015.01.009 [25] 王春乙, 姚蓬娟, 张继权, 等.长江中下游地区双季早稻冷害、热害综合风险评价.中国农业科学, 2016, 49(13):2469-2483. doi: 10.3864/j.issn.0578-1752.2016.13.003 [26] Sun W, Huang Y.Global warming over the period 1961-2008 did not increase high-temperature stress but did reduce low-temperature stress in irrigated rice across China.Agric For Meteorol, 2011, 151:1193-1201. doi: 10.1016/j.agrformet.2011.04.009 [27] 于堃, 宋静, 高苹.江苏水稻高温热害的发生规律与特征.气象科学, 2010, 30(4):530-533. doi: 10.3969/j.issn.1009-0827.2010.04.016 [28] 任义方, 赵艳霞, 高苹, 等.江苏省水稻高温热害气象指数保险区划.江苏农业科学, 2018, 46(19):273-277. http://d.old.wanfangdata.com.cn/Periodical/jsnykx201819072 [29] 杨建莹, 霍治国, 吴立, 等.西南地区水稻洪涝等级评价指标构建及风险分析.农业工程学报, 2015, 31(16):135-144. doi: 10.11975/j.issn.1002-6819.2015.16.019 [30] 汪天颖, 霍治国, 杨建莹, 等.湖南晚稻洪涝过程等级指标构建与演变特征.应用气象学报, 2019, 30(1):35-48. doi: 10.11898/1001-7313.20190104 [31] 杨宏毅, 霍治国, 杨建莹, 等.江汉和江南西部春玉米涝渍指标及风险评估.应用气象学报, 2017, 28(2):237-246. doi: 10.11898/1001-7313.20170211 [32] Wu X, Wang P J, Huo Z G, et al.Crop Drought Identification Index for winter wheat based on evapotranspiration in the Huang-Huai-Hai Plain, China.Agr Ecosys Environ, 2018, 263:18-30. doi: 10.1016/j.agee.2018.05.001 [33] 王培娟, 霍治国, 杨建莹, 等.基于热量指数的东北春玉米冷害指标.应用气象学报, 2019, 30(1):13-24. doi: 10.11898/1001-7313.20190102 [34] Jin H, Zhang F, Yan X, et al.Recent changes of rice heat stress in jiangxi province, southeast china.Int J Biometeor, 2016, 61(4):1-11. [35] 温克刚, 陈双溪.中国气象灾害大典(江苏卷).北京:气象出版社, 2006. [36] 中国气象局.中国气象灾害年鉴(2006-2016).北京:气象出版社, 2006-2016. [37] Tao L X, Tan H J, Wang X, et al.Effects of high temperature stress on flowering and grain-setting characteristics of Guodao 6.Acta Agron Sinica, 2008, 34(4):609-674. doi: 10.1016/S1875-2780(08)60027-9 [38] Matsui T, Omasa K, Horie T.The difference in sterility due to high temperatures during the flowering period among japonica-rice varieties.Plant Prod Sci, 2001, 4(2):90-93. doi: 10.1626/pps.4.90 [39] Tian X, Matsui T, Li S, et al.Heat-induced floret sterility of hybrid rice (Oryza sativa L.) cultivars under humid and low wind conditions in the field of Jianghan Basin, China.Plant Prod Sci, 2010, 13: 243-251. [40] Gourdji S M, Sibley A M, Lobell D B.Global crop exposure to critical high temperatures in the reproductive period:Historical trends and future projections.Environ Res Lett, 2013, 8:24-41. [41] 江西气候概况.[2019-04-01]. http://www.weather.com.cn/jiangxi/jxqh/. [42] 高素华, 王培娟, 万素琴.长江中下游高温热害及对水稻的影响.北京:气象出版社, 2009. [43] 董晓云, 余锦华, 梁信忠, 等.CWRF模式在中国夏季极端降水模拟的误差订正.应用气象学报, 2019, 30(2):223-232. doi: 10.11898/1001-7313.20190209 [44] 周云, 钱忠华, 何文平, 等.我国夏季高温极值的概率分布特征及其演变.应用气象学报, 2011, 22(2):145-151. doi: 10.3969/j.issn.1001-7313.2011.02.003 [45] 卞洁, 李双林, 何金海.长江中下游地区洪涝灾害风险性评估.应用气象学报, 2011, 22(5):604-611. doi: 10.3969/j.issn.1001-7313.2011.05.011 [46] 张蕾, 霍治国, 黄大鹏, 等.10—11月海南省瓜菜苗期湿涝风险评估与区划.应用气象学报, 2015, 26(4):432-441. doi: 10.11898/1001-7313.20150405 [47] 陈忠平, 黄大山, 程飞虎.缓解高温热害稳定粮食产量.江西农业, 2015(11):61. doi: 10.3969/j.issn.1001-8581.2015.11.015 [48] Hatfield J L, Boote K J, Kimball B A, et al.Climate impacts on agriculture:Implications for crop production.Agron J, 2011, 103:351-370. doi: 10.2134/agronj2010.0303 [49] 骆宗强, 石春林, 江敏, 等.孕穗期高温对水稻物质分配及产量结构的影响.中国农业气象, 2016, 37(3):326-334. doi: 10.3969/j.issn.1000-6362.2016.03.008 [50] 谢晓金, 李秉柏, 申双和, 等.抽穗期高温胁迫对水稻花粉活力与结实率的影响.江苏农业学报, 2009, 25(2):238-241. doi: 10.3969/j.issn.1000-4440.2009.02.003 [51] 柳新伟, 孟亚利, 周治国, 等.水稻颖花与籽粒发育模拟的初步研究.中国水稻科学, 2004, 18(3):249-254. doi: 10.3321/j.issn:1001-7216.2004.03.013 [52] Kim J, Shon J, Lee C K, et al.Relationship between grain filling duration and leaf senescence of temperate rice under high temperature.Field Crops Res, 2011, 122:207-213. doi: 10.1016/j.fcr.2011.03.014 [53] Tashiro T, Wardlaw I F.A comparison of the effect of high temperature on grain development in wheat and rice.Annals of Botany, 1989, 64:59-65. doi: 10.1093/oxfordjournals.aob.a087808 [54] Peng S, Huang J, Sheehy J E, et al.Rice Yields Decline with Higher Night Temperature from Global Warming.Proceedings of the National Academy of Sciences of the United States of America, 2004, 101:9971-9975. doi: 10.1073/pnas.0403720101 [55] Mohammed A, Tarpley L.High nighttime temperatures affect rice productivity through altered pollen germination and spikelet fertility.Agric For Meteorol, 2009, 149:999-1008. doi: 10.1016/j.agrformet.2008.12.003