Spatio-temporal Characteristics of Drought in Different Growth Stages of Soybean in Heilongjiang
-
摘要: 干旱是黑龙江省农业生产中的主要自然灾害之一,影响大豆生长发育和产量形成。利用1981—2017年黑龙江省32个农业气象观测站土壤水分资料和26个站大豆生育期资料,采用中国气象局2018年发布的气象行业大豆干旱等级中大豆干旱指标,分析黑龙江省5个区域大豆各生育期干旱发生频率、强度和干旱风险指数的时空变化特征,并对黑龙江大豆干旱风险进行评估与分区。结果表明:大豆轻旱发生频率高于重旱和特旱,西区为干旱多发区域,中区次之,其他区域相对少发;中区干旱发生强度最高,西区次之,北区最低,东区、北区和中区大豆三真叶至鼓粒期干旱发生强度高于前期和后期,而西区和南区在大豆鼓粒至成熟期干旱发生强度高于前期;西区干旱风险最高,中区次之,北区最低,大豆开花-结荚期干旱风险最高,播种-出苗期最低,干旱中等以上风险区域集中在松嫩平原西部和三江平原西南部,其他大部地区为次低或低风险区。Abstract: Heilongjiang is one of the main growing areas of soybean in China. Due to factors such as natural geographical location and climate, drought is one of primary determinant agro-meteorological disasters which constrains growth, development and the formation of soybean yield in Heilongjiang. Utilizing soil moisture data of 32 stations and soybean growth data of 26 stations from 1981 to 2017, the frequency of different grades of droughts, average intensity of drought, and drought risk indices are calculated. Spatio-temporal characteristics are analyzed from 5 regions in Heilongjiang, based on recognized hazard indicators on disaster grades of droughts for soybean from the meteorological industry standard which is released by China Meteorological Administration in 2018. Assessment and distribution of drought risk on the basis of occurrence frequency and intensity for soybean are pertained. Results show that the occurrence frequency of light drought is higher than that of severe and excessive drought for soybean. West region is an area where drought of soybean occurs frequently, centeral region takes the second place, and the other regions have relatively fewer drought occurrences. As for drought intensity, it's the highest in centeral region, the next is in west region, and the lowest drought intensity is in norht region. Moreover, the drought intensity in three-leaf to pod-bearing stage of soybean is higher than that in early and late growth stages in east, north and west regions. While in west and south regions, drought intensity during pod-bearing to maturity stage exceeds that in early stages. Drought risk indexes are negative. The lower number of risk index correlates with greater drought risk. The highest risk area is west region, the next is centeral region, and the last is norht region. It is an opportunity to seek the use of drought risk index as an indicator of drought risk of soybean. Considering the drought risk in different growth stages of soybean, the highest drought risk periods are flowering to pod bearing stages, and the drought risk of soybean is lowest in sowing to emerging stage. Areas of medium to high drought risk lie in the west of Songnen Plain and southwest of Sanjiang Plain in space through the whole growth period of soybean. And the others are low or slight drought risk regions. These results may provide guidance for soybean drought prevention, loss reduction and planting structure adjustment in Heilongjiang. It is strongly advised to strengthen the prediction and prevention of drought, especially in critical growth stages of soybean in two main plains.
-
Key words:
- Heilongjiang;
- soybean;
- drought;
- spatio-temporal characteristics
-
表 1 不同生育期大豆干旱等级
(单位:mm) Table 1 Grade of soybean drought in different growth
(unit: mm) 土壤质地 等级 播种-出苗期 三真叶-分枝期 开花-结荚期 鼓粒期 成熟期 壤土 轻旱 (-12, -0.6] (-12, -1.2] (-20, -2] (-20, -4] (-20, -4] 中旱 (-24, -12] (-24, -12] (-30, -20] (-35, -20] (-35, -20] 重旱 (-30, -24] (-30, -24] (-40, -30] (-50, -35] (-50, -35] 特旱 (-∞, -30] (-∞, -30] (-∞, -40] (-∞, -50] (-∞, -50] 黏土 轻旱 (-9, -1.5] (-9, -1.5] (-15, -2.5] (-15, -5] (-15, -5] 中旱 (-15, -9] (-15, -9] (-25, -15] (-25, -15] (-25, -15] 重旱 (-21, -15] (-21, -15] (-35, -25] (-35, -25] (-35, -25] 特旱 (-∞, -21] (-∞, -21] (-∞, -35] (-∞, -35] (-∞, -35] 表 2 不同生育期大豆水分盈亏量(Qd)及气候倾向率
Table 2 Water deficit and its climatic tendency rate (Qd) of soybean in different growth stages
要素 区域 播种-出苗期 三真叶-分枝期 开花-结荚期 鼓粒期 成熟期 Qd / mm 东区 19.03 10.74 19.42 29.98 33.27 西区 7.31 2.08 10.97 15.53 15.22 南区 13.47 6.80 16.64 24.68 21.94 北区 14.06 6.50 15.59 25.75 29.06 中区 17.13 7.93 16.51 29.59 27.16 全省 14.42 7.09 16.12 25.29 25.72 气候倾向率/ (mm·10 a-1) 东区 0.28** 0.36** 0.51* 0.13 -0.04 西区 0.03 0.06 0.08 0.07 0 南区 0.05 -0.14 -0.52* -0.57* -0.80** 北区 0.09 0.26 0.32 -0.36 -0.41 中区 -0.13 0.02 -0.41 -0.80* -1.03** 全省 0.08 0.12 0.03 -0.26 -0.42* 注:*, * *分别表示达到0.05, 0.01显著性水平。 表 3 黑龙江省大豆干旱指数等级划分
(单位:mm) Table 3 The classification of drought risk index
(unit:mm) 分区 干旱风险指数 低风险区 (-1.4, 0] 次低风险区 (-2.8, -1.4] 中等风险区 (-4.3, -2.8] 次高风险区 (-7.6, 4.3] 高风险区 (-11.0, -7.6] -
[1] 国家统计局.中国统计年鉴.北京:中国统计出版社, 2018. [2] 郭建平.气候变化对中国农业生产的影响研究进展.应用气象学报, 2015, 26(1):1-11. doi: 10.11898/1001-7313.20150101 [3] 贺伟, 布仁仓, 熊在平, 等.1961-2005年东北地区气温和降水变化趋势.生态学报, 2013, 33(2):519-531. http://d.old.wanfangdata.com.cn/Periodical/stxb201302024 [4] 代粮, 刘玉洁, 潘韬.中国东北三省大豆虚拟水时空分异及其影响因素研究.地球信息科学学报, 2018, 20(9):1274-1285. http://d.old.wanfangdata.com.cn/Periodical/dqxxkx201809008 [5] 王圆圆, 扎西央宗.利用条件植被指数评价西藏植被对气象干旱的响应.应用气象学报, 2016, 27(4):435-444. doi: 10.11898/1001-7313.20160406 [6] 李秀芬, 郭昭滨, 赵慧颖, 等.大兴安岭气候干旱变化及对森林火灾的影响.应用气象学报, 2018, 29(5):619-629. doi: 10.11898/1001-7313.20180510 [7] 王永利, 侯琼, 苗百岭, 等.内蒙古马铃薯干旱风险区划.应用气象学报, 2017, 28(4):504-512. doi: 10.11898/1001-7313.20170411 [8] 樊风, 段玮, 杨家康.云南土壤湿度长期变化的初步研究.应用气象学报, 2015, 26(4):409-421. doi: 10.11898/1001-7313.20150403 [9] 宋艳玲, 王建林, 田靳峰, 等.气象干旱指数在东北春玉米干旱监测中的改进.应用气象学报, 2019, 30(1):25-34. doi: 10.11898/1001-7313.20190103 [10] 穆佳, 邱美娟, 谷雨, 等.5种干旱指数在吉林省农业干旱评估中的适用性.应用生态学报, 2018, 29(8):2624-2632. http://d.old.wanfangdata.com.cn/Periodical/yystxb201808021 [11] Liu X F, Zhu X F, Pan Y Z, et al.Performance of different drought indices for agriculture drought in the North China Plain.J Arid Land, 2018, 10(4):507-516. http://www.wanfangdata.com.cn/details/detail.do?_type=perio&id=ghqkx201804002 [12] 赵海燕, 高歌, 张培群, 等.综合气象干旱指标修正及在西南地区的适用性.应用气象学报, 2011, 22(6):698-705. http://qikan.camscma.cn/jamsweb/article/id/20110607 [13] 邱美娟, 郭春明, 王冬妮, 等.基于作物水分亏缺指数的吉林省玉米不同生育阶段干旱特征分析.灾害学, 2018, 33(2):89-98. [14] 谢五三, 王胜, 唐为安, 等.干旱指数在淮河流域的适用性对比.应用气象学报, 2014, 25(2):176-184. http://qikan.camscma.cn/jamsweb/article/id/20140207 [15] 李秀芬, 马树庆, 姜丽霞, 等.两种常用的春玉米干旱等级指标在东北区域的适用性检验.气象, 2017, 43(11):1420-1430. http://d.old.wanfangdata.com.cn/Periodical/qx201711011 [16] 刘宪锋, 朱秀芳, 潘耀忠, 等.农业干旱监测研究进展与展望.地理学报, 2015, 70(11):1835-1848. http://d.old.wanfangdata.com.cn/Periodical/dlxb201511012 [17] 薛昌颖, 马志红, 胡程达.近40年黄淮海地区夏玉米生长季干旱时空特征分析.自然灾害学报, 2016, 25(2):1-14. [18] 解文娟, 杨晓光, 杨婕, 等.气候变化背景下东北三省大豆干旱时空特征.生态学报, 2014, 34(21):6232-6243. http://d.old.wanfangdata.com.cn/Periodical/stxb201421023 [19] 李雅善, 王华, 王艳君.基于作物水分亏缺指数的宁夏酿酒葡萄干旱时空差异分析.自然灾害学报, 2014, 23(4):203-211. http://www.wanfangdata.com.cn/details/detail.do?_type=perio&id=zrzhxb201404026 [20] 隋月, 黄晚华, 杨晓光, 等.气候变化背景下中国南方地区季节性干旱特征与适应II.基于作物水分亏缺指数的越冬粮油作物干旱时空特征.应用生态学报, 2012, 23(9): 2467-2476. [21] 中国气象局.QX/T 259-2015:北方春玉米干旱等级.北京:气象出版社, 2015. [22] 李秀芬, 朱海霞, 宫丽娟, 等.黑龙江省寒地大豆气候适宜度演变特征.中国农学通报, 2018, 34(28):93-100. http://d.old.wanfangdata.com.cn/Periodical/zgnxtb201828018 [23] 中国气象局.QX/T 446-2018:大豆干旱等级.北京:气象出版社, 2018. [24] 吴克宁, 赵瑞.土壤质地分类及其在我国应用探讨.土壤学报, 2019, 56(1):227-241. http://d.old.wanfangdata.com.cn/Periodical/trxb201901022 [25] 胡惠杰, 王猛, 尹小刚, 等.气候变化下东北农作区大豆需水量时空变化特征分析.中国农业大学学报, 2017, 22(2):21-31. http://d.old.wanfangdata.com.cn/Periodical/zgnydxxb201702003