留言板

尊敬的读者、作者、审稿人, 关于本刊的投稿、审稿、编辑和出版的任何问题, 您可以本页添加留言。我们将尽快给您答复。谢谢您的支持!

姓名
邮箱
手机号码
标题
留言内容
验证码

广州高建筑物雷电观测与研究10年进展

吕伟涛 陈绿文 马颖 齐奇 武斌 姜睿娇

吕伟涛, 陈绿文, 马颖, 等. 广州高建筑物雷电观测与研究10年进展. 应用气象学报, 2020, 31(2): 129-145. DOI: 10.11898/1001-7313.20200201..
引用本文: 吕伟涛, 陈绿文, 马颖, 等. 广州高建筑物雷电观测与研究10年进展. 应用气象学报, 2020, 31(2): 129-145. DOI: 10.11898/1001-7313.20200201.
Lü Weitao, Chen Lüwen, Ma Ying, et al. Advances of observation and study on tall-object lightning in Guangzhou over the last decade. J Appl Meteor Sci, 2020, 31(2): 129-145. DOI:  10.11898/1001-7313.20200201.
Citation: Lü Weitao, Chen Lüwen, Ma Ying, et al. Advances of observation and study on tall-object lightning in Guangzhou over the last decade. J Appl Meteor Sci, 2020, 31(2): 129-145. DOI:  10.11898/1001-7313.20200201.

广州高建筑物雷电观测与研究10年进展

DOI: 10.11898/1001-7313.20200201
资助项目: 

国家自然科学基金项目 41805005

国家自然科学基金项目 41075003

国家自然科学基金项目 41775010

中国气象科学研究院基本科研业务费专项 2018Z003

中国气象科学研究院基本科研业务费专项 2015Z006

国家自然科学基金项目 41475003

国家重点研究发展计划 2017YFC1501504

详细信息
    通信作者:

    吕伟涛, lyuwt@foxmail.com

Advances of Observation and Study on Tall-object Lightning in Guangzhou over the Last Decade

  • 摘要: 作为中国气象局雷电野外科学试验基地(CMA_FEBLS)的重要组成部分,广州高建筑物雷电观测站(TOLOG)始建于2009年,迄今已积累数百次高建筑物雷电资料。对于雷电连接过程,高建筑物会起到“放大镜”的作用:TOLOG的观测在国际上首次发现了连接过程中负-正先导之间“头部-侧面”连接的现象,给出了先导连接行为的两种基本形态;揭示了负先导梯级发展过程的精细化结构,给出了下行先导和上行先导的二维/三维发展特征;估算了不同高度建筑物上雷电的闪击距离。高建筑物对雷电电磁场具有“放大器”的作用,且建筑物越高增强效应越显著。高建筑物是下行和上行闪电的“汇集点”:对下行闪电的吸引作用可保护高建筑物附近的其他物体免遭雷击;正地闪的回击、延续电流和云内放电过程均可在高建筑物上触发负极性上行闪电。另外,高建筑物区域可作为闪电监测系统的“标校场”,TOLOG的观测资料在地闪定位系统探测效率和定位精度的评估方面也得到了应用。
  • 图  1  TOLOG主观测点的观测室(拍摄于2018年7月13日)

    Fig. 1  The observation room at the TOLOG main station (taken on 13 Jul 2018)

    图  2  TOLOG的6个观测点与表 1中所列高建筑物的位置分布

    Fig. 2  Location of six observation stations of the TOLOG and tall-objects listed in Table 1

    图  3  雷电连接过程中先导之间侧击形态的高速摄像记录示例

    (文献[8],为提升可视效果所有图像经过了反相处理)

    Fig. 3  High-speed video examples of the "tip-to-lateral" connection behavior of leaders during lightning attachment process

    (from Reference [8], all the images are inverted for a better view)

    图  4  先导之间侧击连接现象的图像示例(图中箭头指示连接点位置,图 4a~图 4e经反相处理以提升可视效果)

    (a)F1103,(b)F1243,(c)F1248,(d)F1258,(e)F1422,(f)F1443

    Fig. 4  Image examples of "tip-to-lateral" connection of leaders (arrows denote the location of junction points, Fig. 4a-Fig. 4e are inverted for a better view)

    (a)F1103, (b)F1243, (c)F1248, (d)F1258, (e)F1422, (f)F1443

    图  5  广州塔建成前后其周围不同距离范围内回击密度(a)和闪电密度(b)算术平均值的相对变化率[23]

    Fig. 5  Relative change rates of arithmetic mean value of stroke density(a) and flash density(b) in the vicinity of the Canton Tower as a function of distance (from Reference [23])

    图  6  2015—2017年TOLOG观测到的高建筑物雷电频次位置分布

    (未标数字的点均代表 1次雷电)

    Fig. 6  Locations of tall-object lightning flashes obtained at the TOLOG during 2015-2017

    (points without numbers mean one flash)

    图  7  1次正地闪及其触发的3个上行闪电示意图

    (+表示正电荷,-表示负电荷,▲为闪电定位系统提供的正地闪接地点位置,箭头表示通道传输方向) [27]v

    Fig. 7  The scenario of a positive cloud-to-ground flash and three upward flashes triggered by the positive flash

    (+ denotes positive charge, - denotes negative charge, ▲ is the ground termination point of positive cloud-to-ground flash reported by the lightning location system, arrows denote directions of channels extension)(from Reference [27])

    表  1  TOLOG主观测点东南方向视野范围内高度超过300 m的8个高建筑物

    Table  1  Eight tall-objects higher than 300 m in the south-east field of view of the TOLOG main station

    建筑物编号 建筑物名称 高度/m 建成时间
    A 广州塔 600* 2009年
    B 广州周大福金融中心,又称广州东塔 530 2014年
    C 广州国际金融中心,又称广州西塔 440 2009年
    D 广晟国际大厦 360 2011年
    E 环球都会广场 318 2014年
    F 珠江城大厦 310 2010年
    G 越秀金融大厦 310 2013年
    H 利通广场 303 2010年
    注:*广州塔高度2009年为610 m,2009年以后降为600 m。
    下载: 导出CSV

    表  2  TOLOG各观测点架设的设备信息

    Table  2  Instruments installed at each observation station of the TOLOG

    TOLOG观测点 建成时间 设备信息
    主观测点(观测点1) 2009年 5套高速摄像机(不同帧率、不同视野)
    2套LAPOS(不同灵敏度)
    2台TLCI
    2台LCI
    4部单反相机(不同视野、不同曝光参数)
    1套雷声探测麦克风阵列
    1部大气平均电场仪
    3套快天线电场变化仪(不同量程)
    3套慢天线电场变化仪(不同量程)
    1个闪电低频电场变化探测阵列子站
    4套闪电磁场变化测量仪(不同量程)
    2套先导电流测量仪(不同量程)
    观测点2 2011年 2套LCI(不同视野)
    观测点3 2017年 1套TLCI,1套LCI
    观测点4 2017年 1套TLCI
    观测点5 2019年 1套LCI
    观测点6 2019年 1套LCI
    下载: 导出CSV

    表  3  2009—2018年TOLOG观测到的高度超过300 m的建筑物上的雷电数量

    Table  3  Numbers of lightning flashes to tall-objects higher than 300 m obtained at the TOLOG during 2009-2018

    年份 建筑物编号
    A B C D E F G H
    2009 3 2
    2010 1 0 0 2
    2011 1 2 1 0 0
    2012 6 5 6 0 0
    2013 4 1 0 0 0 1
    2014 4 9 2 2 0 2 2 1
    2015 13 8 0 0 1 1 0 1
    2016 71 9 4 8 0 0 1 4
    2017 44 8 0 1 0 1 0 0
    2018 33 10 2 4 0 0 0 2
    合计 180 44 18 22 1 4 3 11
    下载: 导出CSV
  • [1] 郭秀峰, 谭涌波, 郭凤霞, 等.建筑物尖端对大气电场畸变影响的数值计算.应用气象学报, 2013, 24(2):189-196. doi:  10.3969/j.issn.1001-7313.2013.02.007
    [2] Rakov V A, Uman M A.Lightning:Physics and Effects.New York:Cambridge University Press, 2003.
    [3] Eriksson A J.Lightning and tall structures.Trans South Afr IEE, 1978, 69(8):238-252. http://d.old.wanfangdata.com.cn/Periodical/dbkxxb200003006
    [4] Shindo T.Lightning striking characteristics to tall structures.IEEJ Transactions on Electrical and Electronic Engineering, 2018, 13(7):938-947. doi:  10.1002/tee.22649
    [5] Zhang Y, Lü W, Chen S, et al.A review of advances in lightning observations during the past decade in Guangdong, China.J Meteor Res, 2016, 30(5):800-819, DOI: 10.1007/s13351-016-6928-7.
    [6] Lu W, Chen L, Zhang Y, et al.Characteristics of unconnected upward leaders initiated from tall structures observed in Guangzhou.J Geophys Res Atmos, 2012, 117, D19211, DOI: 10.1029/2012JD018035.
    [7] Chen L, Zhang Y, Lu W, et al.Performance evaluation for a lightning location system based on observations of artificially triggered lightning and natural lightning flashes.J Atmos Oceanic Technol, 2012, 29(12):1835-1844. doi:  10.1175/JTECH-D-12-00028.1
    [8] Lu W, Chen L, Ma Y, et al.Lightning attachment process involving connection of the downward negative leader to the lateral surface of the upward connecting leader.Geophys Res Lett, 2013, 40:5531-5535. doi:  10.1002/2013GL058060
    [9] 周方聪, 吕伟涛, 陈绿文, 等.高建筑物上闪电普通摄像观测与分析.气象科技, 2013, 41(2):224-230. doi:  10.3969/j.issn.1671-6345.2013.02.004
    [10] Gao Y, Lu W, Ma Y, et al.Three-dimensional propagation characteristics of the upward connecting leaders in six negative tall-object flashes in Guangzhou.Atmos Res, 2014, 149:193-203. doi:  10.1016/j.atmosres.2014.06.008
    [11] 杨了, 吕伟涛, 张阳, 等.改进的互功率谱相位法在雷声声源定位中的应用.应用气象学报, 2014, 25(2):193-201. doi:  10.3969/j.issn.1001-7313.2014.02.009
    [12] 杨欣怡, 吕伟涛, 杨俊, 等.3种阈值方法在闪电通道图像识别中的应用.应用气象学报, 2014, 25(4):427-435. doi:  10.3969/j.issn.1001-7313.2014.04.005
    [13] Chen L, Lu W, Zhang Y, et al.Optical progression characteristics of an interesting natural downward bipolar lightning flash.J Geophys Res Atmos, 2015, 120(2):708-715. doi:  10.1002/2014JD022463
    [14] 王智敏, 吕伟涛, 陈绿文, 等.2011-2012年广州高建筑物雷电磁场特征统计.应用气象学报, 2015, 26(1):87-94. doi:  10.11898/1001-7313.20150109
    [15] 陈绿文, 吕伟涛, 张义军, 等.不同高度建筑物上的下行地闪回击特征.应用气象学报, 2015, 26(3):311-318. doi:  10.11898/1001-7313.20150306
    [16] 李丹, 张义军, 吕伟涛, 等.闪电先导三维自持发展模式的建立.应用气象学报, 2015, 26(2):203-210. doi:  10.11898/1001-7313.20150208
    [17] 高彦, 吕伟涛, 陈绿文, 等.双站摄像资料重建闪电三维通道的方法.高原气象, 2015, 34(3):842-849. http://d.old.wanfangdata.com.cn/Periodical/gyqx201503027
    [18] Lu W, Gao Y, Chen L, et al.Three-dimensional propagation characteristics of the leaders in the attachment process of a downward negative lightning flash.J Atmos Sol Terr Phys, 2015, 136:23-30. doi:  10.1016/j.jastp.2015.07.011
    [19] 廖义慧, 吕伟涛, 齐奇, 等.基于闪电先导随机模式对不同连接形态的模拟.应用气象学报, 2016, 27(3):361-369. doi:  10.11898/1001-7313.20160311
    [20] Qi Q, Lu W, Ma Y, et al.High-speed video observations of the fine structure of a natural negative stepped leader at close distance.Atmos Res, 2016, 178/179:260-267. doi:  10.1016/j.atmosres.2016.03.027
    [21] Lu W, Qi Q, Ma Y, et al.Two basic leader connection scenarios observed in negative lightning attachment process.High Voltage, 2016, 1(1):11-17. doi:  10.1049/hve.2016.0002
    [22] 李峰, 吕伟涛, 李清勇, 等.基于线支持区域的闪电通道识别算法.应用气象学报, 2016, 27(6):725-733. doi:  10.11898/1001-7313.20160609
    [23] Zhang C, Lu W, Chen L, et al.Influence of the Canton Tower on the cloud-to-ground lightning in its vicinity.J Geophys Res Atmos, 2017, 122(11):5943-5954. doi:  10.1002/2016JD026229
    [24] 宿志国, 吕伟涛, 陈绿文, 等.建筑物高度对地闪回击电磁场影响的模拟.应用气象学报, 2018, 29(4):487-495. doi:  10.11898/1001-7313.20180409
    [25] Qi Q, Lyu W, Wu B, et al.Three-dimensional optical observations of an upward lightning triggered by positive cloud-to-ground lightning.Atmos Res, 2018, 214:275-283. doi:  10.1016/j.atmosres.2018.08.003
    [26] 宿志国, 吕伟涛, 王万富.建筑物顶部雷电电磁场的畸变效应研究.电瓷避雷器, 2018, 285(5):27-30. http://d.old.wanfangdata.com.cn/Periodical/dcblq201805005
    [27] Wu B, Lyu W, Qi Q, et al.Synchronized two-station optical and electric field observations of multiple upward lightning flashes triggered by a 310-kA +CG Flash.J Geophys Res Atmos, 2019, 124(2):1050-1063. doi:  10.1029/2018JD029378
    [28] 吴姗姗, 吕伟涛, 齐奇, 等.基于光学资料的广州塔附近下行地闪特征.应用气象学报, 2019, 30(2):203-210. doi:  10.11898/1001-7313.20190207
    [29] Chen L, Lyu W, Zhang Y, et al.Correlated luminosity and magnetic field peaks produced by canton tower-strokes.Atmos Res, 2019, 218:59-69. doi:  10.1016/j.atmosres.2018.11.008
    [30] Su Z, Lyu W, Chen L, et al.Shielding effect of surrounding buildings on the lightning-generated vertical electric field at the top of a tall building.IEEE Transactions on Electromagnetic Compatibility, 2019, 61(1):174-182, DOI: 10.1109/TEMC.2018.2790346.
    [31] 武斌, 吕伟涛, 齐奇, 等.一次正地闪触发两个并发上行闪电的光电观测.应用气象学报, 2019, 30(3):257-266. doi:  10.11898/1001-7313.20190301
    [32] Wu B, Lyu W, Qi Q, et al.High-speed video observations of recoil leaders producing and not producing return strokes in a Canton-Tower upward flash.Geophys Res Lett, 2019, 46:8546-8553. doi:  10.1029/2019GL083862
    [33] Qi Q, Lyu W, Ma Y, et al.High-speed video observations of natural lightning attachment process with framing rates up to half a million frames per second.Geophys Res Lett, 2019, 46:12580-12587. doi:  10.1029/2019GL085072
    [34] 武斌, 吕伟涛, 齐奇, 等.双向先导正端突然延展现象的高速摄像观测.应用气象学报, 2020, 31(2):146-155. doi:  10.11898/1001-7313.20200202
    [35] 齐奇, 吕伟涛, 武斌, 等.广州两个不同高建筑物上闪击距离的二维光学观测.应用气象学报, 2020, 31(2):156-164. doi:  10.11898/1001-7313.20200203
    [36] 陈绿文, 吕伟涛, 马颖, 等.粤港澳闪电定位系统对高建筑物雷电的探测.应用气象学报, 2020, 31(2):165-174. doi:  10.11898/1001-7313.20200204
    [37] Jiang R, Qie X, Wu Z, et al.Characteristics of upward lightning from a 325-m-tall meteorology tower.Atmos Res, 2014, 149:111-119. doi:  10.1016/j.atmosres.2014.06.007
    [38] Jiang R, Wu Z, Qie X, et al.High-speed video evidence of a dart leader with bidirectional development.Geophys Res Lett, 2014, 41(14):5246-5250. doi:  10.1002/2014GL060585
    [39] Jiang R, Sun Z, Wu Z, et al.Concurrent upward lightning flashes from two towers.Atmospheric and Oceanic Science Letter, 2014, 7(3):260-264. doi:  10.1080/16742834.2014.11447171
    [40] Wang Z, Qie X, Jiang R, et al.High-speed video observation of stepwise propagation of a natural upward positive leader.J Geophys Res Atmos, 2016, 121(24):14307-14315. doi:  10.1002/2016JD025605
    [41] Yuan S, Jiang R, Qie X, et al.Characteristics of upward lightning on the Beijing 325 m meteorology tower and corresponding thunderstorm conditions.J Geophys Res Atmos, 2017, 122(22):12093-12105. doi:  10.1002/2017JD027198
    [42] Yuan S, Jiang R, Qie X, et al.Development of side bidirectional leader and its effect on channel branching of the progressing positive leader of lightning.Geophys Res Lett, 2019, 46(3):1746-1753. doi:  10.1029/2018GL080718
    [43] Qiu Z, Gao H, Yang Y.Lightning Parameters Measurement Systems and Instrumentation on Meteorological Gradient Observation Tower in Shenzhen China.2015 International Symposium on Lightning Protection (XⅢ SIPDA), Balneário, Camboriú, Brazil, 2015.
    [44] Yang Y, Qiu Z, Qin Z, et al.Preliminary Results of Lightning Current Measurements at the 356 m High Shenzhen Meteorological Gradient Tower in South China.34th International Conference on Lightning Protection (ICLP), Rzeszow, Poland, 2018.
    [45] Gao Y, Chen M, Qin Z, et al.The spatial evolution of upward positive stepped leaders initiated from a 356-m-tall tower in southern China.J Geophys Res Atmos, 2020, 125(2), DOI: 10.1029/2019JD031508.
    [46] Wang D, Takagi N, Gamerota W R, et al.Initiation processes of return strokes in rocket-triggered lightning.J Geophys Res Atmos, 2013, 118(17):9880-9888. doi:  10.1002/jgrd.50766
    [47] 马颖, 吕伟涛, 杨俊, 等.一种闪电通道自动观测系统: 201911-003352.1.2019-10-22.
    [48] 吕伟涛, 张阳, 马颖, 等.全视野闪电事件观测系统及方法: ZL201110066285.5.2013-09-11.
    [49] Lv W, Ma Y, Zhang Y, et al.Total-sky Lightning Event Observation System and Method: US Patent, US 8902312 B2.2014-12-02.
    [50] 章涵, 王道洪, 吕伟涛, 等.基于雷声到达时间差的单站闪电通道三维定位系统.高原气象, 2012, 31(1):209-217. http://d.old.wanfangdata.com.cn/Periodical/gyqx201201022
    [51] Shi D, Zheng D, Zhang Y, et al.Low-frequency E-field Detection Array (LFEDA)-Construction and preliminary results.Science China(Earth Sciences), 2017, 60(10):1896-1908. doi:  10.1007/s11430-016-9093-9
    [52] Eriksson A.The incidence of lightning strikes to power lines.IEEE Transactions on Power Delivery, 1987, 2(3):859-870. doi:  10.1109/TPWRD.1987.4308191
    [53] Dellera L, Garbagnati E.Lightning stroke simulation by means of the leader progression model.I.Description of the model and evaluation of exposure of free-standing structures.IEEE Transactions on Power Delivery, 1990, 5(4):2009-2022. doi:  10.1109/61.103696
    [54] Rizk F A.Modeling of lightning incidence to tall structures.I.Theory.IEEE Transactions on Power Delivery, 1994, 9(1):162-171. doi:  10.1109/61.277673
    [55] Mazur V, Ruhnke L, Bondiou-Clergerie A, et al.Computer simulation of a downward negative stepped leader and its interaction with a ground structure.J Geophys Res Atmos, 2000, 105(D17):22361-22369. doi:  10.1029/2000JD900278
    [56] Ait-Amar S, Berger G.Lightning Interception on Elevated Building.5th WSEAS Int Conf on Power Systems & EMC, Corfu, Greece, 2005.
    [57] Kostinskiy A Y, Syssoev V, Bogatov N, et al.Observations of the connection of positive and negative leaders in meter-scale electric discharges generated by clouds of negatively charged water droplets.J Geophys Res Atmos, 2016, 121(16):9756-9766. doi:  10.1002/2016JD025079
    [58] Hussein A, Milewski M, Janischewskyj W, et al.Characteristics of lightning flashes striking the CN Tower below its tip.Journal of Electrostatics, 2007, 65(5/6):307-315. http://www.wanfangdata.com.cn/details/detail.do?_type=perio&id=330f760206628d5579f1eb97b8d9bb55
    [59] Lu W, Wang D, Takagi N, et al.Characteristics of the optical pulses associated with a downward branched stepped leader.J Geophys Res Atmos, 2008, 113, D21206, DOI: 10.1029/2008JD010231.
    [60] Biagi C, Jordan D, Uman M, et al.High-speed video observations of rocket-and-wire initiated lightning.Geophys Res Lett, 2009, 36, L15801, DOI: 10.1029/2009GL038525.
    [61] Hill J, Uman M, Jordan D.High-speed video observations of a lightning stepped leader.J Geophys Res Atmos, 2011, 116, D16117, DOI: 10.1029/2011JD015818.
    [62] Petersen D A, Beasley W H.High-speed video observations of a natural negative stepped leader and subsequent dart-stepped leader.J Geophys Res Atmos, 2013, 118(21):12110-12119. doi:  10.1002/2013JD019910
    [63] Tran M D, Rakov V A, Mallick S.A negative cloud-to-ground flash showing a number of new and rarely observed features.Geophys Res Lett, 2014, 41(18):6523-6529. doi:  10.1002/2014GL061169
    [64] Warner T.Upward Leader Development from Tall Towers in Response to Downward Stepped Leader.30th International Conference on Lightning Protection(ICLP), Cagliari, Italy, 2010.
    [65] Saba M, Paiva A, Schumann C, et al.Lightning attachment process to common buildings.Geophys Res Lett, 2017, 44(9):4368-4375. doi:  10.1002/2017GL072796
    [66] Lafkovici A, Hussein A M, Janischewskyj W, et al.Evaluation of the performance characteristics of the North American Lightning Detection Network based on tall-structure lightning.IEEE Transactions on Electromagnetic Compatibility, 2008, 50(3):630-641. doi:  10.1109/TEMC.2008.927922
    [67] Kazazi S, Hussein A, Liatos P.Evaluation of NALDN performance characteristics in the vicinity of the CN Tower based on tall-structure lightning.Electric Power Systems Research, 2017, 153:19-31. doi:  10.1016/j.epsr.2016.12.005
    [68] Baba Y, Rakov V A.Lightning strikes to tall objects:Currents inferred from far electromagnetic fields versus directly measured currents.Geophys Res Lett, 2007, 34, L19810, DOI: 10.1029/2007gl030870.
    [69] 张长秀.广州高建筑物对其周围地闪活动特征影响的研究.北京: 中国气象科学研究院, 2017.
    [70] Hussein A, Jan S, Todorovski V, et al.Influence of the CN Tower on the Lightning Environment in Its Vicinity.International Lightning Detection Conference and International Lightning Meteorological Conference(ILDC/ILMC), Orlando, Florida, USA, 2010.
    [71] Diendorfer G, Schulz W, Umprecht H, et al.Effect of Tower Initiated Lightning on the Ground Stroke Density in the Vicinity of the Tower.International Lightning Detection Conference and International Lightning Meteorology Conference (ILDC/ILMC), Orlando, Florida, USA, 2010.
    [72] Wang D, Takagi N.Characteristics of winter lightning that occurred on a windmill and its lightning protection tower in Japan.IEEJ Transactions on Power and Energy, 2012, 132(6):568-572. doi:  10.1541/ieejpes.132.568
    [73] Zhou H, Diendorfer G, Thottappillil R, et al.Measured current and close electric field changes associated with the initiation of upward lightning from a tall tower.J Geophys Res Atmos, 2012, 117, D08102, DOI: 10.1029/2011JD017269.
    [74] Warner T A, Cummins K L, Orville R E.Upward lightning observations from towers in Rapid City, South Dakota and comparison with National Lightning Detection Network data, 2004-2010.J Geophys Res Atmos, 2012, 117, D19109, DOI: 10.1029/2012JD018346.
    [75] Mazur V, Ruhnke L H.Physical processes during development of upward leaders from tall structures.Journal of Electrostatics, 2011, 69(2):97-110. doi:  10.1016/j.elstat.2011.01.003
    [76] Mazur V, Ruhnke L H, Warner T A, et al.Recoil leader formation and development.Journal of Electrostatics, 2013, 71(4):763-768. doi:  10.1016/j.elstat.2013.05.001
    [77] Velde O A, AMontanyà J.Asymmetries in bidirectional leader development of lightning flashes.J Geophys Res Atmos, 2013, 118(24):13504-13519. doi:  10.1002/2013JD020257
    [78] Mazur V.The physical concept of recoil leader formation.Journal of Electrostatics, 2016, 82:79-87. doi:  10.1016/j.elstat.2016.05.005
    [79] Qie X, Pu Y, Jiang R, et al.Bidirectional leader development in a preexisting channel as observed in rocket-triggered lightning flashes.J Geophys Res Atmos, 2017, 122(2):586-599. doi:  10.1002/2016JD025224
    [80] Schulz W, Diendorfer G, Pedeboy S, et al.The European lightning location system EUCLID-Part 1:Performance analysis and validation.Natural Hazards and Earth System Sciences, 2016, 16(2):595-605. doi:  10.5194/nhess-16-595-2016
  • 加载中
图(7) / 表(3)
计量
  • 摘要浏览量:  4055
  • HTML全文浏览量:  1719
  • PDF下载量:  140
  • 被引次数: 0
出版历程
  • 收稿日期:  2019-10-15
  • 修回日期:  2019-12-27
  • 刊出日期:  2020-03-31

目录

    /

    返回文章
    返回