留言板

尊敬的读者、作者、审稿人, 关于本刊的投稿、审稿、编辑和出版的任何问题, 您可以本页添加留言。我们将尽快给您答复。谢谢您的支持!

姓名
邮箱
手机号码
标题
留言内容
验证码

广州两座高建筑物上闪击距离的二维光学观测

齐奇 吕伟涛 武斌 马颖 陈绿文 姜睿娇

齐奇, 吕伟涛, 武斌, 等. 广州两座高建筑物上闪击距离的二维光学观测. 应用气象学报, 2020, 31(2): 156-164. DOI: 10.11898/1001-7313.20200203..
引用本文: 齐奇, 吕伟涛, 武斌, 等. 广州两座高建筑物上闪击距离的二维光学观测. 应用气象学报, 2020, 31(2): 156-164. DOI: 10.11898/1001-7313.20200203.
Qi Qi, Lü Weitao, Wu Bin, et al. Two-dimensional optical observation of striking distance of lightning flashes to two buildings in Guangzhou. J Appl Meteor Sci, 2020, 31(2): 156-164. DOI:  10.11898/1001-7313.20200203.
Citation: Qi Qi, Lü Weitao, Wu Bin, et al. Two-dimensional optical observation of striking distance of lightning flashes to two buildings in Guangzhou. J Appl Meteor Sci, 2020, 31(2): 156-164. DOI:  10.11898/1001-7313.20200203.

广州两座高建筑物上闪击距离的二维光学观测

DOI: 10.11898/1001-7313.20200203
资助项目: 

中国气象科学研究院基本科研业务费专项 2017-Y009

中国气象科学研究院基本科研业务费专项 2018Z003

国家自然科学基金项目 41775010

国家重点研究发展计划 2017YFC1501504

详细信息
    通信作者:

    吕伟涛, lyuwt@foxmail.com

Two-dimensional Optical Observation of Striking Distance of Lightning Flashes to Two Buildings in Guangzhou

  • 摘要: 利用广州高建筑物雷电观测站的高速摄像机在2012—2018年拍摄到的发生在两座尖顶建筑物广州塔(600 m高,12次)和广晟国际大厦(360 m高,9次)上的21次下行地闪光学数据,结合广东电网闪电定位系统提供的回击峰值电流数据,统计建筑物高度和回击峰值电流强度对闪击距离的影响,并探讨闪击距离与上行连接先导起始时间的相关性。结果表明:更高的建筑物上雷电的闪击距离更长,广州塔闪击距离的中位数约是广晟国际大厦闪击距离中位数的2倍;对于确定高度的建筑物,闪击距离有随着回击峰值电流增强而变长的趋势,且建筑物越高,对应的回击峰值电流也越强;在下行与上行先导连接前0.1 ms内,二者的平均速率之比小于4,且速率比值在0~1这一区间的样本最多,占比约65%。
  • 图  1  TOLOG与广州塔和广晟国际大厦的相对位置示意图

    Fig. 1  Location of the TOLOG, the Canton Tower and the Guangsheng International Building

    图  2  高速摄像HC-1 (10000帧/s)拍摄的一次广晟国际大厦上发生的闪电过程图像

    (a)-2.2 ms,(b)-0.1 ms,(c)0.5 ms

    Fig. 2  Lightning process images occurred on the Guangsheng International Building, obtained by high-speed video camera HC-1 (10000 fps)

    (a)-2.2 ms, (b)-0.1 ms, (c)0.5 ms

    图  3  广州塔和广晟国际大厦的闪击距离

    Fig. 3  Striking distance from the Canton Tower to the Guangsheng International Building

    图  4  闪击距离与回击峰值电流关系

    Fig. 4  The relationship of the lightning return stroke peak current to the striking distance

    图  5  广州塔和广晟国际大厦闪击距离与上行连接先导起始时间的关系

    Fig. 5  The relationship between initiation time of the UCL and the striking distance from the Canton Tower to the Guangsheng International Building

    图  6  上行先导与下行先导的二维平均速率统计

    (a)回击前0~0.1 ms上行先导的速率,(b)回击前0~0.5 ms上行先导的速率,(c)回击前0~0.1 ms下行先导的速率,(d)回击前0~0.5 ms下行先导的速率

    Fig. 6  Two-dimensional average speeds statistic chart of upward connecting leader (UCL) and downward leader (DL)

    (a)speeds of UCL from 0 to 0.1 ms before the return stroke, (b)speeds of UCL from 0 to 0.5 ms before the return stroke, (c)speeds of DL from 0 to 0.1 ms before the return stroke, (d)speeds of DL from 0 to 0.5 ms before the return stroke

    图  7  回击过程发生前0.1 ms内下行先导速率(Vd)与上行连接先导速率(Vu)的比值

    Fig. 7  The ratio between the speed of downward leader (Vd) and that of upward connecting leader (Vu) during 0.1 ms before the return stroke

    表  1  高速摄像机参数

    Table  1  Parameters of High-speed Video Cameras

    观测时间 设备编号 型号 帧率/(帧/s) 焦距/mm 空间分辨率/(m/像素)
    广州塔 广晟国际大厦
    2012年6月—2015年11月 HC-1 Photron FASTCAM SA5 10000 14 4.7 3.0
    2016年5月—2018年9月 HC-1 Photron FASTCAM SAZ 20000 14 4.7 3.0
    2010年6月—2018年9月 HC-2 Photron FASTCAM SA5 50000 20 3.3
    下载: 导出CSV
  • [1] Rakov V A, Uman M A.Lightning:Physics and Effects.New York:Cambridge University Press, 2003.
    [2] Rakov V A, Tran M D.The breakthrough phase of lightning attachment process:From collision of opposite-polarity streamers to hot-channel connection.Electric Power Systems Research, 2019, 173:122-134. doi:  10.1016/j.epsr.2019.03.018
    [3] Golde R H.Lightning Protection.Edward Arnold, London, 1973: 26-30.
    [4] Rakov V A, Lutz A O.A New Technique for Estimating Equivalent Attractive Radius for Downward Lightning Flashes//Proc 20th Int Conf on Lightning Protection, 1990: p.2.2.
    [5] Berger K, Vogelsanger E.Photographische Blitzuntersuchungen der Jahre 1955-1965 auf dem Monte San Salvatore.Bull Schweiz Elektrotech Ver, 1966, 57:599-620.
    [6] Warner T A.Upward Leader Development from Tall Towers in Response to Downward Stepped Leaders.International Conference on Lightning Protection (ICLP), Cagliari, Italy, 2010.
    [7] Lu W, Zhang Y, Chen L, et al.Attachment Processes of Two Natural Downward Lightning Flashes Striking on High Structures.30th International Conference on Lightning Protection.Power and Energy Soc, Cagliari, Italy, 2010.
    [8] Lu W, Chen L, Ma Y, et al.Lightning attachment process involving connection of the downward negative leader to the lateral surface of the upward connecting leader.Geophys Res Lett, 2013, 40(20):5531-5535. doi:  10.1002/2013GL058060
    [9] Gao Y, Lu W, Ma Y, et al.Three-dimensional propagation characteristics of the upward connecting leaders in six negative tall-object flashes in Guangzhou.Atmos Res, 2014, 149:193-203, DOI: 10.1016/j.atmosres.2014.06.008.
    [10] Wang D, Gamerota W R, Uman M A, et al.Lightning attachment processes of an"anomalous" triggered lightning discharge.J Geophys Res Atmos, 2014, 119:1524-1533, DOI: 10.1002/2013JD020787.
    [11] Jiang R, Qie X, Wang Z, et al.Characteristics of lightning leader propagation and ground attachment.J Geophys Res Atmos, 2015, 120:11988-12002.
    [12] Tran M D, Rakov V A.When does the lightning attachment process actually begin.J Geophys Res Atmos, 2015, 120:6836-6922.
    [13] Lu W, Qi Q, Ma Y, et al.Two basic leader connection scenarios observed in negative lightning attachment process.High Voltage, 2016, 1(1):11-17, DOI: 10.1049/hve.2016.0002.
    [14] Saba M M F, Paiva A R, Schumann C, et al.Lightning attachment process to common buildings.Geophys Res Let, 2017, 44:4368-4375, DOI: 10.1002/2017GL072796.
    [15] Visacro S, Guimaraes M, Murta Vale M H.Striking distance determined from high-speed videos and measured currents in negative cloud-to-ground lightning.J Geophys Res Atmos, 2017, 122:13356-13369. doi:  10.1002/2017JD027354
    [16] Tran M D, Rakov V A.A study of the ground-attachment process in natural lightning with emphasis on its breakthrough phase.J Sci Rep, 2017, 7(1):15761, DOI: 10.1038/s41598-017-14842-7.
    [17] 李俊, 张义军, 吕伟涛, 等.一次多回击自然闪电的高速摄像观测.应用气象学报, 2008, 19(4):401-411. doi:  10.3969/j.issn.1001-7313.2008.04.003
    [18] Cooray V, Rakov V, Theethayi N.The lightning striking distance-Revisited.Journal of Electrostatics, 2007, 65(5/6):296-306.https://doi.org/10.1016/j.elstat.2006.09.008. doi:  10.1016/j.elstat.2006.09.008
    [19] Love E R.Improvements on Lightning Stroke Modeling and Applications to the Design of EHV and UHV Transmission Lines.Colorado: University of Colorado, 1973.
    [20] Golde R H.The Lightning Conductor Lightning.San Diego: Academic, 1977.
    [21] Eriksson A J.The Lightning Ground Flash-An Engineering Study.Pretoria, South Africa: Faculty of Engineering, University of Natal, 1979.
    [22] Cooray V.A model for negative first return strokes in negative lightning flashes.Phys Scr, 1997, 55:119-128. doi:  10.1088/0031-8949/55/1/024
    [23] 杨欣怡, 吕伟涛, 杨俊, 等.3种阈值方法在闪电通道图像识别中的应用.应用气象学报, 2014, 25(4):427-435. doi:  10.3969/j.issn.1001-7313.2014.04.005
    [24] 王智敏, 吕伟涛, 陈绿文, 等.2011-2012年广州高建筑物雷电磁场特征统计.应用气象学报, 2015, 26(1):87-94. doi:  10.11898/1001-7313.20150109
    [25] 陈绿文, 吕伟涛, 张义军, 等.不同高度建筑物上的下行地闪回击特征.应用气象学报, 2015, 26(3):311-318. doi:  10.11898/1001-7313.20150306
    [26] 吴姗姗, 吕伟涛, 齐奇, 等.基于光学资料的广州塔附近下行地闪特征.应用气象学报, 2019, 30(2):203-210. doi:  10.11898/1001-7313.20190207
    [27] 武斌, 吕伟涛, 齐奇, 等.一次正地闪触发两个并发上行闪电的光电观测.应用气象学报, 2019, 30(3):257-266. doi:  10.11898/1001-7313.20190301
    [28] 武斌, 吕伟涛, 齐奇, 等.双向先导正端突然延展现象的高速摄像观测.应用气象学报, 2020, 31(2):146-155. doi:  10.11898/1001-7313.20200202
    [29] 吕伟涛, 陈绿文, 马颖, 等.广州高建筑物雷电观测与研究10年进展.应用气象学报, 2020, 31(2):129-145. doi:  10.11898/1001-7313.20200201
    [30] Wang D, Watanabe T, Takagi N.A High Speed Optical Imaging System for Studying Lightning Attachment Rrocess//Proceedings of the 7th Asia-Pacific International Conference on Lightning, 2011: 937-940.
    [31] Chen L, Lu W, Zhang Y, et al.Optical progression characteristics of an interesting natural downward bipolar lightning flash.J Geophys Res Atmos, 2015, 120:708-715, DOI: 10.1002/2014JD022463.
    [32] Zhang C, Lu W, Chen L, et al.Influence of the Canton Tower on the cloud-toground lightning in its vicinity.J Geophys Res Atmos, 2017, 122, DOI: 10.1002/2016JD026229.
    [33] Chen L, Zhang Y, Lu W, et al.Performance evaluation for a lightning location system based on observations of artificially triggered lightning and natural lightning flashes.J Atmos Ocean Technol, 2012, 29(12):1835-1844, DOI: 10.1175/JTECH-D-12-00028.1.
    [34] Eriksson A J.An improved electrogeometric model for transmission line shielding analysis.IEEE Trans Power Delivery, 1987, 2:871-877.
    [35] Eriksson A J.The incidence of lightning strikes to power lines.IEEE Trans Power Delivery, 1987, 2:859-870. doi:  10.1109/TPWRD.1987.4308191
    [36] Rizk F A M.Modeling of transmission line:exposure to direct lightning strokes.IEEE Trans Power Delivery, 1990, 5:1983-1989. doi:  10.1109/61.103694
    [37] Rizk F A M.Modeling of lightning incidence to tall structures Part Ⅱ:Application.IEEE Trans Power Delivery, 1994, 9:172-193. doi:  10.1109/61.277690
    [38] Mazur V, Ruhnke L H, Bondiou-Clergerie A, et al.Computer simulation of a downward negative stepped leader and its interaction with a ground structure.J Geophys Res, 2000, 105(D17):22361-22369, DOI: 10.1029/2000JD900278.
    [39] Dellera L, Garbagnati E.Lightning stroke simulation by means of the Leader Progression Model.Ⅰ:Description of the model and evaluation of exposure of free-standing structures.IEEE Trans Power Delivery, 1990, 5:2009-2022, DOI: 10.1109/61.103696.
    [40] Dellera L, Garbagnati E.Lightning stroke simulation by means of the Leader Progression Model.Ⅱ:Exposure and shielding failure evaluation of overhead lines with assessment of application graphs.IEEE Trans Power Delivery, 1990, 5:2023-2029, DOI: 10.1109/61.103697.
    [41] Diendorfer G, Pichler H.Properties of Lightning Discharges to an Instrumented Tower and Their Implication on the Location of Those Flashes by Lightning Location Systems.6th International Workshop on Physics of Lightning, 2006.
    [42] Baba Y, Rakov V A.Lightning strikes to tall objects:Currents inferred from far electromagnetic fields versus directly measured currents.Geophys Res Lett, 2007, 34, L19810, DOI: 10.1029/2007GL030870.
    [43] Lafkovici A, Hussein A M, Janischewskyj W, et al.Performance Analysis of the North American Lightning Detection Network Using CN Tower Lightning Data.19th International Lightning Detection Conference, 2006.
    [44] 廖义慧, 吕伟涛, 齐奇, 等.基于闪电先导随机模式对不同连接形态的模拟.应用气象学报, 2016, 27(3):361-369. doi:  10.11898/1001-7313.20160311
  • 加载中
图(7) / 表(1)
计量
  • 摘要浏览量:  3710
  • HTML全文浏览量:  1357
  • PDF下载量:  42
  • 被引次数: 0
出版历程
  • 收稿日期:  2019-10-08
  • 修回日期:  2020-01-20
  • 刊出日期:  2020-03-31

目录

    /

    返回文章
    返回