留言板

尊敬的读者、作者、审稿人, 关于本刊的投稿、审稿、编辑和出版的任何问题, 您可以本页添加留言。我们将尽快给您答复。谢谢您的支持!

姓名
邮箱
手机号码
标题
留言内容
验证码

一次多回击触发闪电全过程的连续干涉仪观测

张阳 陈泽方 王敬轩 樊艳峰 郑栋 吕伟涛 张义军

张阳, 陈泽方, 王敬轩, 等. 一次多回击触发闪电全过程的连续干涉仪观测. 应用气象学报, 2020, 31(2): 197-212. DOI: 10.11898/1001-7313.20200207..
引用本文: 张阳, 陈泽方, 王敬轩, 等. 一次多回击触发闪电全过程的连续干涉仪观测. 应用气象学报, 2020, 31(2): 197-212. DOI: 10.11898/1001-7313.20200207.
Zhang Yang, Chen Zefang, Wang Jingxuan, et al. Observation of the whole discharge process during a multi-stroke triggered lightning by continuous interferometer. J Appl Meteor Sci, 2020, 31(2): 197-212. DOI:  10.11898/1001-7313.20200207.
Citation: Zhang Yang, Chen Zefang, Wang Jingxuan, et al. Observation of the whole discharge process during a multi-stroke triggered lightning by continuous interferometer. J Appl Meteor Sci, 2020, 31(2): 197-212. DOI:  10.11898/1001-7313.20200207.

一次多回击触发闪电全过程的连续干涉仪观测

DOI: 10.11898/1001-7313.20200207
资助项目: 

国家自然科学基金项目 41905004

国家自然科学基金项目 41775009

中国气象科学研究院基本科研业务费专项 2018Z003

国家重点研究发展计划 2017YFC1501501

详细信息
    通信作者:

    张阳, zhangyang@cma.gov.cn

Observation of the Whole Discharge Process During a Multi-stroke Triggered Lightning by Continuous Interferometer

  • 摘要: 基于自主研发的闪电连续干涉仪,对2019年6月11日在中国气象局雷电野外科学试验基地广州从化人工引雷试验场成功触发的一次多回击闪电放电全过程进行观测,结合通道底部电流数据和电场变化数据,共同揭示触发闪电全放电过程:连续干涉仪能够定位到最小为8 A的不连续的先驱电流脉冲辐射信号,初始先驱电流脉冲(IPCP)的平均转移电荷量约为先驱电流脉冲(PCP)的2倍;上行正先导连续发展后为初始连续电流(ICC)过程,最初正流光通道以105 m·s-1量级的速度继续发展延伸,之后出现反冲先导放电;在ICC阶段出现的经典M分量,可由向前的106 m·s-1量级速度的正流光(先导)产生,也可由已有通道头部产生的反冲先导产生,且整个M分量过程中,多个反冲先导维持了放电过程的持续;之后的回击间过程以反冲先导为主要放电形式,回击电流脉冲之前存在多次反冲先导过程,但多数未发展到接地通道,只处于企图先导阶段,直至成功的先导回击产生;而前两次回击具有超短的时间间隔,约为4.5 ms,这是由于两次回击前的先导来源于云内不同分支的反冲先导过程。
  • 图  1  人工引雷试验场观测布局

    Fig. 1  Observation layout in the triggering lightning site

    图  2  触发闪电全过程辐射源分布、通道电流(红线)和电场变化波形(辐射源颜色代表时间)

    (a)慢电场波形, (b)辐射源时间-仰角分布和对应电流波形, (c)辐射源半球投影, (d)辐射源方位角-仰角分布

    Fig. 2  Radiation sources distribution, channel-base current and electric field change waveform during the whole triggered lightning (colors of radiation sources corresponding to time)

    (a)waveform of slow electric field change, (b)elevation of radiation sources versus time and the corresponding current waveform, (c)hemispherical projection of radiation sources, (d)elevation of radiation sources versus azimuth

    图  3  PCP和IPCP的电流峰值分布(a)和脉冲宽度分布(b)

    Fig. 3  Distribution of peak current(a) and distribution of pulse width(b) for PCP and IPCP

    图  4  ICC阶段辐射源分布、通道电流(红线)和电场变化波形(辐射源颜色代表时间)

    (a)慢电场波形, (b)辐射源时间-仰角分布和对应电流波形, (c)辐射源半球投影, (d)辐射源方位角-仰角分布

    Fig. 4  Radiation sources distribution, channel-base current and electric field change waveform during ICC stage (colors of radiation sources corresponding to time)

    (a)waveform of slow electric field change, (b)elevation of radiation sources versus time and the corresponding current waveform, (c)hemispherical projection of radiation sources, (d)elevation of radiation sources versus azimuth

    图  5  1002~1004 ms辐射源分布、通道电流(红色曲线)和电场变化波形(辐射源颜色代表时间)

    (a)慢电场波形, (b)辐射源时间-仰角分布和对应电流波形, (c)辐射源半球投影, (d)辐射源方位角-仰角分布

    Fig. 5  Radiation sources distribution, channel-base current and electric field change waveform during 1002-1004 ms (colors of radiation sources corresponding to time)

    (a)waveform of slow electric field change, (b)elevation of radiation sources versus time and the corresponding current waveform, (c)hemispherical projection of radiation sources, (d)elevation of radiation sources versus azimuth

    图  6  1004~1015 ms的辐射源分布、电流波形(红色曲线)和电场变化波形(辐射源颜色代表时间)

    (a)慢电场波形, (b)辐射源时间-仰角分布和对应电流波形, (c)辐射源半球投影, (d)辐射源方位角-仰角分布

    Fig. 6  Radiation sources distribution, channel-base current and electric field change waveform during 1004-1015 ms (colors of radiation sources corresponding to time)

    (a)waveform of slow electric field change, (b)elevation of radiation sources versus time and the corresponding current waveform, (c)hemispherical projection of radiation sources, (d)elevation of radiation sources versus azimuth

    图  7  一个M分量的辐射源分布、电流波形(红色曲线)和电场变化波形(辐射源颜色代表时间)

    (a)慢电场波形, (b)辐射源时间-仰角分布和对应电流波形, (c)辐射源半球投影, (d)辐射源方位角-仰角分布

    Fig. 7  Radiation sources distribution, channel-base current and electric field change waveform during a M discharge (colors of radiation sources corresponding to time)

    (a)waveform of slow electric field change, (b)elevation of radiation sources versus time and the corresponding current waveform, (c)hemispherical projection of radiation sources, (d)elevation of radiation sources versus azimuth

    图  8  1285~1305 ms M分量的辐射源分布、电流波形(红色曲线)和电场变化波形(辐射源颜色代表时间)

    (a)慢电场波形, (b)辐射源时间-仰角分布和对应电流波形, (c)辐射源半球投影, (d)辐射源方位角-仰角分布

    Fig. 8  Radiation sources distribution, channel-base current and electric field change waveform during M discharge during 1285-1305 ms (colors of radiation sources corresponding to time)

    (a)waveform of slow electric field change, (b)elevation of radiation sources versus time and the corresponding current waveform, (c)hemispherical projection of radiation sources, (d)elevation of radiation sources versus azimuth

    图  9  第1、2次回击间放电的辐射源分布、电流波形(红线)和电场变化波形(辐射源颜色代表时间,指向RS1和RS2的箭头分别代表第1和第2次回击前的发展路径)

    (a)慢电场波形, (b)辐射源时间-仰角分布和对应电流波形, (c)辐射源半球投影, (d)辐射源方位角-仰角分布

    Fig. 9  Radiation sources distribution, channel-base current and electric field change waveform during the 1st RS and the 2nd RS (colors of radiation sources corresponding to time, arrows to RS1 and RS2 represent development paths before the first return stroke and the second return stroke)

    (a)waveform of slow electric field change, (b)elevation of radiation sources versus time and the corresponding current waveform, (c)hemispherical projection of radiation sources, (d)elevation of radiation sources versus azimuth

    图  10  第6次回击前放电的辐射源分布、电流波形(红色曲线)和电场变化波形(辐射源颜色代表时间)

    (a)慢电场波形, (b)辐射源时间-仰角分布和对应电流波形, (c)辐射源半球投影, (d)辐射源方位角-仰角分布

    Fig. 10  Radiation sources distribution, channel-base current and electric field change waveform before the 6th RS (colors of radiation sources corresponding to time)

    (a)waveform of slow electric field change, (b)elevation of radiation sources versus time and the corresponding current waveform, (c)hemispherical projection of radiation sources, (d)elevation of radiation sources versus azimuth

    表  1  先驱放电过程的电流参量

    Table  1  Current parameters during precursor current pulse stage

    发展阶段 脉冲样本量 持续时间 平均峰值/A 脉冲宽度/μs 平均转移电荷/μC 整体转移电荷/μC
    PCP 39 650 ms 26.8 3.0 21.0 824
    IPCP 18 400 μs 23.9 4.9 41.3 743
    下载: 导出CSV

    表  2  回击过程电流参量

    Table  2  Current parameters during return stroke stage

    回击次序 时间间隔/ms 峰值/ kA 转移电荷量/C
    1 0 10.57 0.59
    2 4.5 5.66 0.48
    3 87.6 12.69 0.66
    4 30 13.73 0.66
    5 70 13.82 0.73
    6 100 20.86 1.66
    7 90 16.55 0.90
    8 190 36.45 5.32
    平均值 71 16.29 1.37
    下载: 导出CSV
  • [1] 武斌, 张广庶, 文军, 等.闪电初始预击穿过程辐射脉冲特征及电流模型.应用气象学报, 2017, 28(5):555-567. doi:  10.11898/1001-7313.20170504
    [2] 张义军, 周秀骥.雷电研究的回顾和进展.应用气象学报, 2006, 17(6):829-834. doi:  10.3969/j.issn.1001-7313.2006.06.019
    [3] 谢盟, 张阳, 张义军, 等.两种类型M分量物理特征和机制对比.应用气象学报, 2015, 26(4):69-77. doi:  10.11898/1001-7313.20150407
    [4] 肖桐, 张阳, 吕伟涛, 等.人工触发闪电M分量的电流与电磁场特征.应用气象学报, 2013, 24(4):446-454. doi:  10.3969/j.issn.1001-7313.2013.04.007
    [5] 谭涌波, 张冬冬, 周博文, 等.地闪近地面形态特征的数值模拟.应用气象学报, 2015, 26(2):211-220. doi:  10.11898/1001-7313.20150209
    [6] 张义军, 杨少杰, 吕伟涛, 等.2006-2011年广州人工触发闪电观测试验和应用.应用气象学报, 2012, 23(5):513-522. doi:  10.3969/j.issn.1001-7313.2012.05.001
    [7] 周方聪, 张义军, 吕伟涛, 等.人工触发闪电连续电流过程与M分量特征.应用气象学报, 2014, 25(3):330-338. doi:  10.3969/j.issn.1001-7313.2014.03.010
    [8] Qie X S, Zhang Y J, Yuan T, et al.A review of atmospheric electricity research in China.Adv Atmos Sci, 2015, 32(2):169-191. doi:  10.1007/s00376-014-0003-z
    [9] Rakov V A, Uman M A, Rambo K J, et al.New insights into lightning processes gained from triggered-lightning experiments in Florida and Alabama.J Geophys Res, 1998, 103(D12):14117-14130. doi:  10.1029/97JD02149
    [10] 钱勇, 张阳, 张义军, 等.人工触发闪电先驱电流脉冲波形特征及模拟.应用气象学报, 2016, 27(6):716-724. doi:  10.11898/1001-7313.20160608
    [11] 张义军, 吕伟涛, 陈绍东, 等.广东野外雷电综合观测试验十年进展.气象学报, 2016, 74(5):655-671. http://d.old.wanfangdata.com.cn/Periodical/qxxb201605001
    [12] Lu W T, Zhang Y J, Zhou X J, et al.Simultaneous optical and electrical observations on the initial processes of altitude-triggered negative lightning.Atmos Res, 2009, 91(2/4):353-359.
    [13] 李俊, 吕伟涛, 张义军, 等.一次多分叉多接地的空中触发闪电过程.应用气象学报, 2010, 21(1):95-100. doi:  10.3969/j.issn.1001-7313.2010.01.013
    [14] Winn W P, Eastvedt E M, Trueblood J J, et al.Luminous pulses during triggered lightning.J Geophys Res, 2012, 117:D10204. http://d.old.wanfangdata.com.cn/NSTLQK/NSTL_QKJJ0227153095/
    [15] Edens H E, Eack K B, Eastvedt E M, et al.VHF lightning mapping observations of a triggered lightning flash.Geophys Res Let, 2012, 39(19):L19807.
    [16] Shao X M, Stanley M A, Krehbiel P R, et al.Results of Observations with the New Mexico Tech VHF Interferometer//10th International Conference on Atmospheric Electricity, Soc of Atmos Electr of Jpn, Toyokawa, 1996: 317-320.
    [17] Dong W, Liu X, Yu Y, et al.Broadband interferometer observations of a triggered lightning.Chin Sci Bull, 2001, 46(18):1561-1565. doi:  10.1007/BF02900582
    [18] Sun Z, Qie X, Jiang R, et al.Characteristics of a rocket-triggered lightning flash with large stroke number and the associated leader propagation.J Geophys Res Atmos, 2014, 119:13388-13399. doi:  10.1002/2014JD022100
    [19] Stock M G, Akita M, Krehbiel P R, et al.Continuous broadband digital interferometry of lightning using a generalized cross-correlation algorithm.J Geophys Res Atmos, 2014, 119:3134-3165. http://www.wanfangdata.com.cn/details/detail.do?_type=perio&id=5ce957f0750878109425a7f7aca55b5a
    [20] Li Y, Qiu S, Shi L, et al.Three-dimensional reconstruction of cloud-to-ground lightning using high-speed video and VHF broadband interferometer.J Geophys Res Atmos, 2017, 122:13420-13435. doi:  10.1002/2017JD027214
    [21] Zhang Y, Krehbiel P R, Zhang Y J, et al.Observations of the initial stage of a rocket-and-wire triggered lightning discharge.Geophys Res Lett, 2017, 44(9):4332-4340. doi:  10.1002/2017GL072843
    [22] Chen Z, Zhang Y, Zheng D, et al.A method of three-dimensional location for LFEDA combining the time of arrival method and the time reversal technique.J Geophys Res Atmos, 2019, 124:6484-6500. doi:  10.1029/2019JD030401
    [23] Zhang Y, Zhang Y J, Zheng D, et al.Characteristics and discharge processes of M events with large current in triggered lightning.Radio Science, 2018, 53(8):974-985. doi:  10.1029/2018RS006552
    [24] Zhang Y, Zhang Y J, Xie M, et al.Characteristics and correlation of return stroke, M component and continuing current for triggered lightning.Electric Power System Research, 2016, 139:10-15. doi:  10.1016/j.epsr.2015.11.024
    [25] William R, Krehbiel P R, Stock M G, et al.Observations of narrow bipolar events reveal how lightning is initiated in thunderstorms.Nature Communications, 2016, 7:10721. doi:  10.1038/ncomms10721
    [26] Shao X M, Krehbiel P R, Thomas R J, et al.Radio interferometric observations of cloud-to-ground lightning phenomena in Florida.J Geophys Res, 1995, 100(D2):2749-2783. doi:  10.1029/94JD01943
    [27] Yoshida S, Biagi C J, Rakov V A, et al.Three-dimensional imaging of upward positive leaders in triggered lightning using VHF broadband digital interferometers.Geophys Res Lett, 2010, 37:L05805. http://www.wanfangdata.com.cn/details/detail.do?_type=perio&id=d12d3932c283cf68cba0ed713759dbc6
    [28] Zheng D, Zhang Y J, Zhang Y, et al.Characteristics of the initial stage and return stroke currents of rocket-triggered lightning flashes in southern China.J Geophys Res Atmos, 2017, 122(12):6431-6452. doi:  10.1002/2016JD026235
    [29] 张广庶, 赵玉祥, 郄秀书, 等.利用无线电窄带干涉仪定位系统对地闪全过程的观测与研究.中国科学(D辑), 2008, 38(9):1167-1180. doi:  10.3321/j.issn:1006-9267.2008.09.013
  • 加载中
图(10) / 表(2)
计量
  • 摘要浏览量:  3192
  • HTML全文浏览量:  1198
  • PDF下载量:  61
  • 被引次数: 0
出版历程
  • 收稿日期:  2019-10-08
  • 修回日期:  2020-01-17
  • 刊出日期:  2020-03-31

目录

    /

    返回文章
    返回