Impact of Arctic Extreme Cyclones on Cold Spells in China During Early 2015
-
摘要: 从北大西洋中高纬度进入北极的极端气旋会引起北极异常增暖,与中高纬度极端天气事件关系密切,危害极大。利用ERA-Interim再分析资料和中国地面气象站观测资料,探讨了2015年1—2月两个极端气旋(C1,C2)影响中国天气的物理过程和机制。结果表明:当极端气旋生成并北移,附近大气低层和高层均出现异常增暖,中高纬度大气环流表现为乌拉尔阻塞形势形成,极涡断裂,低压槽加深南压,我国发生寒潮天气;且极端气旋伴随的异常增暖加强Rossby波能量频散,使中高纬度的槽和脊发展。对比发现,C1和C2的生成地和路径均存在差异,相比于C2,C1生成纬度较高且路径偏东,对应低温寒潮天气范围更大,但强度比C2略弱。这些结果均表明,极端气旋的生成和移动是中国寒潮天气发生的重要原因之一。Abstract: Extreme cyclones entering the Arctic from the mid-high latitude North Atlantic can cause anomalous warming in the Arctic region, which is closely related to extreme weather in mid-high latitudes and is very harmful. However, there are few studies on the impact of extreme cyclones upon weather and climate in China. Physical processes and mechanisms of two extreme cyclones (C1 and C2) affecting cold spells in China during January and February of 2015 are explored, ERA-Interim reanalysis data and observations from China meteorological stations are used. Results show that extreme cyclones occur on the mid-high latitude North Atlantic and meanwhile the anomalous warming appears near the extreme cyclones center in the lower and upper atmosphere. When extreme cyclones move northward, circulations in mid-high latitudes are shown as the formation and maintenance of Ural Blocking and the break-up of the polar vortex. Then the mid-high latitude trough deepens and moves southward over China, and the cold air intrudes southward into China driven by the northerly flow behind the trough, which results in cold weather occurring in China. Furthermore, the mechanism of the apparent adjustment in the polar vortex and general circulation are explored. It shows that the anomalous warming accompanied by extreme cyclones promotes the development of the mid-high latitude troughs and ridges through the energy dispersion of anomalous Rossby waves. In addition, comparison analysis in terms of their occurrence and track shows that there are significant differences between C1 and C2. Compared with C2, C1 occurs in higher latitudes and has an eastward track. Because of these differences, anomalous Rossby waves of C1 are divided into two branches which disperse energy upstream along high latitude and middle latitude, but C2 only has one branch of the anomalous Rossby wave dispersing upstream along the mid-latitude westerlies. Due to the discrepancy of anomalous Rossby waves between C1 and C2, adjustments of circulation in two events are different. Affected by these factors, C1 corresponds to a wider range of cold weather, and under effects of a little trough the duration of 5 d is longer than C2's which only lasts for 3 d. Cold spells corresponding with C2 only affects Northeast China, but apparently its intensity is slightly stronger than C1's. These results indicate that extreme cyclones are one of the important causes of cold spells in China. It also should be pointed out that more extreme cyclone events will be analyzed to draw more definite conclusions in future and provide a new reference for forecasting cold spells in China.
-
Key words:
- extreme cyclones;
- Arctic;
- polar vortex;
- winter weather;
- cold spells
-
图 2 2015年1月18日(a)、20日(b)、22日(c)和25日(d)C1的移动路径(黑色点表示历史路径,黄色三角形表示当日位置)、850 hPa温度距平(填色)和平均海平面气压距平场(等值线,单位:hPa,实线为正,虚线为负,间隔5 hPa)
Fig. 2 Track of C1(black dots represent historic track and the yellow triangle represents the center location on the date) and distribution of 850 hPa temperature anomalies(the shaded) and mean sea level pressure anomalies (the contour, unit:hPa, solid and dashed lines denote positive and negative values with interval of 5 hPa, respectively) on 18 Jan(a), 20 Jan(b), 22 Jan(c) and 25 Jan(d) in 2015
图 3 2015年1月18日(a)、22日(b)、24日(c)和26日(d)500 hPa温度距平场(填色)和高度场(等值线,单位:dagpm,棕色线表示脊线,“D”表示极涡中心)
Fig. 3 Distribution of 500 hPa temperature anomalies(the shaded) and geopotential height (the contour, unit:dagpm, brown line represents ridge-line, "D" represents polar vortex center) on 18 Jan(a), 22 Jan(b), 24 Jan(c) and 26 Jan(d) in 2015
图 4 2015年1月18日(a)、21日(b)、24日(c)和26日(d)300 hPa Rossby波活动通量的距平场(箭头)及散度距平场(填色)和500 hPa高度场(等值线,单位:dagpm)
Fig. 4 Distribution of Rossby wave activity flux anomalies at 300 hPa(the arrow, unit:m2·s-2) with its divergence anomalies(the shaded) and 500 hPa geopotential height(the contour) on 18 Jan(a), 21 Jan(b), 24 Jan(c) and 26 Jan(d) in 2015
图 6 2015年1月25日(a)和27日(b)整层(地面至300 hPa)积分水汽通量散度(填色,单位:10-4 kg·m-2·s-1),海平面气压距平场(等值线,单位:hPa)和850 hPa风场(箭头)(阴影区为青藏高原)
Fig. 6 Vertically integrated(surface to 300 hPa) moisture flux divergence(the shaded, unit:10-4 kg·m-2·s-1), mean sea level pressure anomalies(the contour, unit:hPa) and 850 hPa wind field(the arrow, the gray shading represents the Tibet Plateau) on 25 Jan(a) and 27 Jan(b) in 2015
-
[1] Serreze M C, Barry R G.Processes and impacts of Arctic amplification:a research synthesis.Global Planet Change, 2011, 77(1-2):85-96. http://cn.bing.com/academic/profile?id=206d23f36d3582e124f187cfd476a931&encoded=0&v=paper_preview&mkt=zh-cn [2] 杨萍, 刘伟东, 王启光, 等.近40年我国极端温度变化趋势和季节特征.应用气象学报, 2010, 21(1):29-36. http://qikan.camscma.cn/jamsweb/article/id/20100104 [3] 龚志强, 王晓娟, 崔冬林, 等.区域性极端低温事件的识别及其变化特征.应用气象学报, 2012, 23(2):195-204. http://qikan.camscma.cn/jamsweb/article/id/20120208 [4] 李庆祥, 黄嘉佑.对我国极端高温事件阈值的探讨.应用气象学报, 2011, 22(2):138-144. http://qikan.camscma.cn/jamsweb/article/id/20110202 [5] 张勇, 曹丽娟, 许吟隆, 等.未来我国极端温度事件变化情景分析.应用气象学报, 2008, 19(6):655-660. http://qikan.camscma.cn/jamsweb/article/id/20080603 [6] 杨萍, 封国林, 刘伟东, 等.空间点过程理论在极端气候事件中的应用研究.应用气象学报, 2010, 21(3):352-359. http://qikan.camscma.cn/jamsweb/article/id/20100311 [7] Tang Q H, Zhang X J, Yang X H, et al.Cold winter extremes in northern continents linked to Arctic sea ice loss.Environ Res Lett, 2013, 8(1):014036. http://cn.bing.com/academic/profile?id=f66d57de8698591ec4481b9dbf005c60&encoded=0&v=paper_preview&mkt=zh-cn [8] Cohen J.An observational analysis:Tropical relative to Arctic influence on midlatitude weather in the era of Arctic amplification.Geophys Res Lett, 2016, 43(10):5287-5294. http://cn.bing.com/academic/profile?id=ec61921850a640af9a7a07a3c87c43d5&encoded=0&v=paper_preview&mkt=zh-cn [9] 武炳义, 杨琨.从2011/2012和2015/2016年冬季大气环流异常看北极海冰以及前期夏季北极大气环流异常的作用.气象学报, 2016, 74(5):683-696. doi: 10.11676/qxxb2016.068 [10] Wu B Y.Winter atmospheric circulation anomaly associated with recent Arctic winter warm anomalies.J Climate, 2017, 30(21):8469-8479. http://www.wanfangdata.com.cn/details/detail.do?_type=perio&id=a58bd410a1e9881dec372054e83ad76d [11] Overland J E, Wood K R, Wang M.Warm Arctic-cold continents:Climate impacts of the newly open Arctic Sea.Polar Res, 2011, 30(1):15787. http://d.old.wanfangdata.com.cn/OAPaper/oai_doaj-articles_4b22045d5a80913b919264c872b05b09 [12] Overland J E, Dethloff K, Francis J A, et al.Nonlinear response of mid-latitude weather to the changing Arctic.Nat Clim Change, 2016, 6(11):992-999. http://www.wanfangdata.com.cn/details/detail.do?_type=perio&id=f24e212f30001a05831acb787c411863 [13] 武炳义.2012年1月、2016年1月东亚两次极端严寒事件及其与北极增暖的可能联系.大气科学学报, 2019, 42(1):14-27. http://d.old.wanfangdata.com.cn/Periodical/njqxxyxb201901003 [14] 熊光明, 陈权亮, 魏麟骁, 等.平流层极涡偏移对我国冬季降水的影响.应用气象学报, 2012, 23(6):683-690. http://qikan.camscma.cn/jamsweb/article/id/20120605 [15] 李红军, 马玉芬.夏季区域极涡异常对塔里木河流域降水的影响.应用气象学报, 2017, 28(5):589-599. doi: 10.11898/1001-7313.20170507 [16] 董仕, 肖子牛.冬季北极涛动对东亚表面温度的持续异常影响.应用气象学报, 2015, 26(4):422-431. doi: 10.11898/1001-7313.20150404 [17] 董晓峣, 武炳义.江淮地区夏季高温事件与北极冷异常的动力联系.应用气象学报, 2019, 30(4):431-442. doi: 10.11898/1001-7313.20190404 [18] Francis J A, Vavrus S J.Evidence linking Arctic amplification to extreme weather in mid-latitudes.Geophys Res Lett, 2012, 39:L06801. http://cn.bing.com/academic/profile?id=7a299b0906a61712ca00befc9ce95fc3&encoded=0&v=paper_preview&mkt=zh-cn [19] Tibaldi S, Molteni F.On the operational predictability of blocking.Tellus, 1990, 42A:343-365. http://cn.bing.com/academic/profile?id=302dd8634a88b70fc6a989ca4511f1ef&encoded=0&v=paper_preview&mkt=zh-cn [20] Luo D, Xiao Y, Yao Y, et al.Impact of Ural blocking on winter warm Arctic-cold Eurasian anomalies.Part Ⅰ:Blocking-induced amplification.J Climate, 2016, 29(11):3925-3947. doi: 10.1175/JCLI-D-15-0611.1 [21] Luo D, Chen X, Dai A, et al.Changes in atmospheric blocking circulations linked with winter Arctic warming:A new perspective.J Climate, 2018, 31(18):7661-7678. http://cn.bing.com/academic/profile?id=6fbbe4c51c11e937f5310ecfecab014a&encoded=0&v=paper_preview&mkt=zh-cn [22] Yao Y, Luo D, Dai A, et al.Increased quasi stationarity and persistence of winter Ural blocking and Eurasian extreme cold events in response to Arctic warming.Part Ⅰ:Insights from observational analyses.J Climate, 2017, 30(10):3549-3568. doi: 10.1175/JCLI-D-16-0261.1 [23] Luo D, Xiao Y, Diao Y, et al.Impact of Ural blocking on winter warm Arctic-cold Eurasian anomalies.Part Ⅱ:The link to the North Atlantic Oscillation.J Climate, 2016, 29(11):3949-3971. doi: 10.1175/JCLI-D-15-0612.1 [24] Luo B, Luo D, Wu L, et al.Atmospheric circulation patterns which promote winter Arctic sea ice decline.Environ Res Lett, 2017, 12(5):054017. http://www.wanfangdata.com.cn/details/detail.do?_type=perio&id=IOP_9342903 [25] Kim B M, Son S W, Min S K, et al.Weakening of the stratospheric polar vortex by Arctic sea-ice loss.Nat Commun, 2014, 5:4646. http://www.wanfangdata.com.cn/details/detail.do?_type=perio&id=d98405c996decb475de14059e4f149e3 [26] Rogers J C, Mosley-Thompson E.Atlantic arctic cyclones and the mild Siberian winters of the 1980s.Geophys Res Lett, 1995, 22(7):799-802. http://www.wanfangdata.com.cn/details/detail.do?_type=perio&id=10.1029/95GL00301 [27] Brümmer B, Thiemann S, KirchgäβNer A.A cyclone statistics for the Arctic based on European Centrere-analysis data.Meteorol Atmos Phys, 2000, 75(3/4):233-250. http://cn.bing.com/academic/profile?id=8f5bfbd16ebc2a3ce16b3b4bd976bd9a&encoded=0&v=paper_preview&mkt=zh-cn [28] Mccabe G J, Clark M P, Serreze M C.Trends in northern hemisphere surface cyclone frequency and intensity.J Climate, 2001, 14(12):2763-2768. http://cn.bing.com/academic/profile?id=a28f2395c00a2b007cc5bb81e4628e83&encoded=0&v=paper_preview&mkt=zh-cn [29] Zhang X D, Walsh J E, Zhang J, et al.Climatology and interannual variability of Arctic cyclone activity:1948-2002.J Climate, 2004, 17(12):2300-2317. http://cn.bing.com/academic/profile?id=45bffec3ccb4bb1ecf742e025ce82f5a&encoded=0&v=paper_preview&mkt=zh-cn [30] Sorteberg A, Walsh J E.Seasonal cyclone variability at 70°N and its impact on moisture transport into the Arctic.Tellus A, 2008, 60(3):17. http://www.wanfangdata.com.cn/details/detail.do?_type=perio&id=10.1111/j.1600-0870.2008.00314.x [31] Sanders F, Gyakum J R.Synoptic-dynamic climatology of the "bomb".Mon Wea Rev, 1980, 108(10):1589-1606. http://cn.bing.com/academic/profile?id=a645d35daf1aea0da54c21385d7662f5&encoded=0&v=paper_preview&mkt=zh-cn [32] Rinke A, Maturilli M, Graham R M, et al.Extreme cyclone events in the Arctic:Wintertime variability and trends.Environ Res Lett, 2017, 12(9):094006. http://cn.bing.com/academic/profile?id=52b63b894e70d797c0bddb1529fbd525&encoded=0&v=paper_preview&mkt=zh-cn [33] Moore G W K.The December 2015 North pole warming event and increasing occurrence of such events.Sci Rep, 2016, 6:39084. http://cn.bing.com/academic/profile?id=2588ce9bfd4c2de15c88e0f1e402608b&encoded=0&v=paper_preview&mkt=zh-cn [34] Kim B M, Hong J Y, Jun S Y, et al.Major cause of unprecedented Arctic warming in January 2016:Critical role of an Atlantic windstorm.Sci Rep, 2017, 7:40051. http://cn.bing.com/academic/profile?id=42c8f7a4e13d9fab13b5df703250e647&encoded=0&v=paper_preview&mkt=zh-cn [35] Vavrus S J Extreme Arctic cyclones in CMIP5 historical simulations.Geophys Res Lett, 2013, 40(23):6208-6212. http://www.wanfangdata.com.cn/details/detail.do?_type=perio&id=10.1002/2013GL058161 [36] Simmonds I, Rudeva I.A comparison of tracking methods for extreme cyclones in the Arctic basin.Tellus A, 2014, 66(1):25252. http://www.wanfangdata.com.cn/details/detail.do?_type=perio&id=Doaj000003727528 [37] Boisvert L N, Petty A A, Stroeve J C.The impact of the extreme winter 2015/16 Arctic cyclone on the Barents-Kara Seas.Mon Wea Rev, 2016, 144(11):4279-4287. http://cn.bing.com/academic/profile?id=473cb482a79802a92002d011230f1b46&encoded=0&v=paper_preview&mkt=zh-cn [38] Inoue J, Hori M E, Takaya K.The role of Barents sea ice in the wintertime cyclone track and emergence of a warm-Arctic cold-Siberian anomaly.J Climate, 2012, 25(7):2561-2568. http://cn.bing.com/academic/profile?id=318ede9c2efa3a1fd7e1e39a98f2fb04&encoded=0&v=paper_preview&mkt=zh-cn [39] Cohen L, Hudson S R, Walden V P, et al.Meteorological conditions in a thinner Arctic sea ice regime from winter to summer during the Norwegian young sea ice expedition(N-ICE2015).J Geophys Res, 2017, 122(14):7235-7259. http://www.wanfangdata.com.cn/details/detail.do?_type=perio&id=58577a999ad0b1a04a2708d17e3e3c8f [40] Dee D P, Uppala S M, Simmons A J, et al.The ERA-Interim reanalysis:Configuration and performance of the data assimilation system.Q J Roy Meteor Soc, 2011, 137:553-597. http://cn.bing.com/academic/profile?id=9bc4bbd7bd7cea960f893da7d1bd58e7&encoded=0&v=paper_preview&mkt=zh-cn [41] 中国国家标准化管理委员会.GB/T20484-2006.冷空气等级标准.北京:中国标准出版社, 2006. [42] Takaya K, Nakamura H.A formulation of a phase-independent wave-activity flux for stationary and migratory quasigeostrophic eddies on a zonally varying basic flow.J Atmos Sci, 2001, 58(6):608-627. http://www.wanfangdata.com.cn/details/detail.do?_type=perio&id=3b87a057cf0a70f198edb98872315dd5 [43] 黄立文, 仪清菊, 秦曾灏, 等.西北太平洋温带气旋爆发性发展的热力-动力学分析.气象学报, 1999, 57(5):581-593. http://www.wanfangdata.com.cn/details/detail.do?_type=perio&id=QK199901039594 [44] 朱乾根, 林锦瑞, 寿绍文, 等.天气学原理和方法(第四版).北京:气象出版社, 2007. [45] Luo D, Yao Y, Dai A, et al.Increased quasi-stationarity and persistence of winter Ural blocking and Eurasian extreme cold events in response to Arctic warming.Part Ⅱ:A theoretical explanation.J Climate, 2017, 30(10):3569-3587. doi: 10.1175/JCLI-D-16-0261.1 [46] 张婧雯, 李栋梁, 柳艳菊.北半球极涡新特征及其对中国冬季气温的影响.高原气象, 2014, 33(3):721-732. http://d.old.wanfangdata.com.cn/Periodical/gyqx201403014 [47] 张恒德, 高守亭, 刘毅.极涡研究进展.高原气象, 2008, 27(2):452-461. http://d.old.wanfangdata.com.cn/Periodical/gyqx200802027 [48] 顾思南, 杨修群.北半球绕极涡的变异及其与我国气候异常的关系.气象科学, 2006, 26(2):135-142. http://d.old.wanfangdata.com.cn/Periodical/qxkx200602003 [49] 陈文, 黄荣辉.北半球冬季准定常行星波的三维传播及其年际变化.大气科学, 2005, 29(1):137-146. http://d.old.wanfangdata.com.cn/Periodical/daqikx200501016 [50] Zhong L, Hua L, Luo D.Local and external moisture sources for the Arctic warming over the Barents-Kara Seas.J Climate, 2018, 31:1963-1982. http://www.wanfangdata.com.cn/details/detail.do?_type=perio&id=5c35540c5384cce465cb08a20db4f2ef