Characteristics of the Waterspout in East Dongting Lake on 13 August 2017
-
摘要: 利用常规观测资料、自动气象站资料及湖南省岳阳多普勒天气雷达资料对2017年8月13日东洞庭湖水龙卷(简称扁山水龙卷)进行分析。结果表明:高空辐散、中低空低压切变、边界层气旋式辐合与特殊环境共同形成强烈辐合上升流场,3个相继北上的γ中尺度低涡中第2个低涡在上升流场和前后低涡共同作用下,在扁山水域迅速加强形成水龙卷,扁山湖心自动气象站风向风速、气压、能见度等变化较为显著,但仅伴随0.2 mm阵性降水。雷达产品显示:扁山水域强辐合带北部强降水质心低、强风切变低、切变上空水平径向风速小,但整条辐合带无风暴跟踪信息、中气旋和龙卷式涡旋特征;风廓线显示扁山水龙卷形成时边界层0.6 km中气旋与0.3 km近地面辐合流场上下叠加。通过与安徽升金湖水龙卷以及洞庭湖区历史上多次龙卷进行比较,认为低空强烈气旋式辐合流场对水龙卷生消有重要作用,高空大范围辐散与中低空、边界层、地面辐合垂直叠加产生的强烈抬升抽吸作用则是扁山水龙卷的主要成因。Abstract:
Based on conventional weather data, automatic weather station data, and the observation of Yueyang Doppler radar, a waterspout occurred in Bianshan waters of East Dongting Lake (Bianshan waterspout for short) on 13 August 2017 is analyzed. Results show that the cold and warm airflows converge in the East Dongting Lake area when the upper East Asian trough forces the cold air southward, and the subtropical high guides the southwestern warm moist flow northward. The quasi stationary front over the north central Hunan Province is northeast to southwest, forming an "S" curve, which is favorable for the convergence of frontal instability energy to the East Dongting Lake area. The special geographical environment is easy to trigger canyon effect, which often leads to increased wind speed and humidity. The strong divergence in front of the upper trough, the deep low-pressure shear from northeast to southwest in the middle and lower layers, strong cyclonic convergence in the boundary layer, and the special topography jointly form a strong convergent upwelling flow field. When three meso-gamma-scale low eddies on the ground move northward to Bianshan waters, influenced by combined effects of the above flow field and the front and back vortices, the second vortex strengthens rapidly and forms a waterspout. The meteorological factors such as wind speed, wind direction, air pressure and visibility recorded by the lighthouse automatic meteorological station in the lake center change significantly when the waterspout passes, while precipitation is only 0.2 mm. Yueyang Doppler radar shows that the centroid of heavy precipitation is low to the north of strong convergence zone, where shear of strong wind is moderate and the radial wind speed over the shear is low. Yueyang Doppler radar wind profiles show that mesocyclone at the height of 0.6 km and the convergent flow fields near the ground at the height of 0.3 km are superimposed when the waterspout formed at 0905 BT. Waterspouts in the southern convergence zone have no storm tracking information, mesocyclones or tornado-type vortices. However, heavy precipitation accompanied by strong subsidence and convergence at the middle and low altitudes often produce both rising and subsidence currents, which are obviously unfavorable for the formation and development of waterspouts that need huge upward pumping. Comparing and analyzing waterspout processes of the Shengjin Lake in Anhui Province and the Dongting Lake in Hunan Province, it is concluded that the funnel-shaped strong lift suction caused by large-scale divergence at high altitude and the deep low-pressure shear from northeast to southwest in the middle and lower layers, and the intense convergence of cyclones and surface cyclones in the boundary layer are the main causes of the waterspout formation.
-
图 7 2017年8月13日08:48(a)、09:00(b)、09:05(c)岳阳多普勒天气雷达0.5°仰角径向速度
(图 7c中,黄色椭圆为辐合带,黄色箭头为气流带走向)
Fig. 7 Radial velocity of Yueyang Doppler radar with 0.5° elevation at 0848 BT(a), 0900 BT(b) and 0905 BT(c) on 13 Aug 2017
(the yellow ellipse is convergence zone and the yellow arrow is the direction of airflow zone in Fig. 7c)
表 1 2017年8月13日岳阳多普勒天气雷达9.9°仰角最大径向速度演变(单位:m·s-1)
Table 1 Evolution of maximum radial velocity of Yueyang Doppler radar with 9.9° elevation on 13 Aug 2017(unit:m·s-1)
时间 入流径向速度 出流径向速度 08:31 32 31 08:37 25 29 08:42 22 15 08:48 25 19 08:54 31 21 09:00 19 21 09:05 19 22 09:11 31 30 表 2 东洞庭湖扁山水龙卷与安徽升金湖水龙卷特征差异
Table 2 Characteristics of Bianshan Waterspout in the East Dongting Lake and the Shengjin Lake Waterspout in Anhui Province
气象要素 扁山水龙卷 升金湖水龙卷 移动速度 9.1 m·s-1 缓慢 移动距离 4 km 1 km 龙卷级别 F1 F0 切变线附近的风速 西南风达到急流标准 未达到急流标准 低层垂直风切变 大 小 主要成因 边界层中气旋与近地面强烈的气旋式辐合流场叠加 高温高湿的低层大气中大量不稳定能量集中释放 超级单体龙卷 是 否 -
[1] 俞小鼎, 郑媛媛, 张爱民, 等.安徽一次强烈龙卷的多普勒天气雷达分析.高原气象, 2006, 25(5):914-924. doi: 10.3321/j.issn:1000-0534.2006.05.020 [2] 何彩芬, 姚秀萍, 胡春蕾, 等.一次台风前部龙卷的多普勒天气雷达分析.应用气象学报, 2006, 17(3):370-375;386. doi: 10.3969/j.issn.1001-7313.2006.03.015 [3] 王宁, 王婷婷, 张硕, 等.东北冷涡背景下一次龙卷过程的观测分析.应用气象学报, 2014, 25(4):463-469. doi: 10.3969/j.issn.1001-7313.2014.04.009 [4] 陈元昭, 俞小鼎, 陈训来, 等.2015年5月华南一次龙卷过程观测分析.应用气象学报, 2016, 27(3):334-341. doi: 10.11898/1001-7313.20160308 [5] 段亚鹏, 王东海, 刘英."东方之星"翻沉事件强对流天气分析及数值模拟.应用气象学报, 2017, 28(6):666-677. doi: 10.11898/1001-7313.20170603 [6] 李彩玲, 杨宇声, 郑启康, 等.一次台风暴雨中的龙卷风天气.广东气象, 2007, 29(3):26-29. doi: 10.3969/j.issn.1007-6190.2007.03.008 [7] 朱君鉴, 刘娟, 王德育, 等.2006年6月皖北龙卷多普勒雷达产品分析.气象科技, 2009, 37(5):523-526;642. doi: 10.3969/j.issn.1671-6345.2009.05.003 [8] 黄先香, 俞小鼎, 炎利军, 等.广东两次台风龙卷的环境背景和雷达回波对比.应用气象学报, 2018, 29(1):70-83. doi: 10.11898/1001-7313.20180107 [9] 陈燕, 张宁.江苏沿海近地层风阵性及台风对其影响.应用气象学报, 2019, 30(2):177-190. doi: 10.11898/1001-7313.20190205 [10] 高晓梅, 俞小鼎, 王令军, 等.山东半岛两次海风锋引起的强对流天气对比.应用气象学报, 2018, 29(2):245-256. doi: 10.11898/1001-7313.20180210 [11] 冯晋勤, 刘铭, 蔡菁.闽西山区"7·22"极端降水过程中尺度对流特征.应用气象学报, 2018, 29(6):748-758. doi: 10.11898/1001-7313.20180610 [12] 郑峰, 钟建锋, 娄伟平.圣帕(0709)台风外围温州强龙卷风特征分析.高原气象, 2010, 29(2):506-513. http://d.old.wanfangdata.com.cn/Periodical/gyqx201002027 [13] 张劲梅, 莫伟强.2013年3月20日广东东莞罕见龙卷冰雹特征及成因分析.暴雨灾害, 2013, 32(4):330-337. doi: 10.3969/j.issn.1004-9045.2013.04.005 [14] 徐学义, 赵振东, 梁红新.三次非超级单体龙卷风暴多普勒雷达特征对比分析.高原气象, 2014, 33(4):1164-1172. http://d.old.wanfangdata.com.cn/Periodical/gyqx201404030 [15] 朱江山, 刘娟, 边智, 等.一次龙卷生成中风暴单体合并和涡旋特征的雷达观测研究.气象, 2015, 41(2):182-191. http://d.old.wanfangdata.com.cn/Periodical/qx201502006 [16] 李兆慧, 王东海, 麦雪湖, 等.2015年10月4日佛山龙卷过程的观测分析.气象学报, 2017, 75(2):288-313. http://d.old.wanfangdata.com.cn/Periodical/qxxb201702008 [17] 吴语燕, 田慷, 张明明.池州市一次水龙卷过程的探讨与分析.绿色科技, 2018(22):89-91;121. http://d.old.wanfangdata.com.cn/Periodical/lsdsj201822034 [18] 杨伟, 李蜀湘, 欧阳红, 等.洞庭湖区龙卷风//中国科学技术协会编.第七届中国湖泊论坛论文集.北京: 人民出版社, 2017: 71-81. [19] 罗哲贤.多尺度系统中台风自组织的研究.气象学报, 2005, 63(5):672-682. doi: 10.3321/j.issn:0577-6619.2005.05.012 [20] 滕代高, 罗哲贤, 李春虎, 等.斜压大气中台风涡旋自组织的研究.气象学报, 2008, 66(1):71-80. http://d.old.wanfangdata.com.cn/Periodical/qxxb200801007 [21] 张晓慧, 张立凤, 周海申, 等.双台风相互作用及其影响.应用气象学报, 2019, 30(4):456-466. doi: 10.11898/1001-7313.20190406 [22] 邹友家.水龙卷简介.世界海运, 2000(4):11-14. http://www.wanfangdata.com.cn/details/detail.do?_type=perio&id=QK200001339239 [23] Johnr S, 史国君, 孔秋云.水龙卷.广西气象, 1983, 4(2):50-51. http://d.old.wanfangdata.com.cn/Periodical/zsjjs200802015 [24] 杨伟, 曹向林, 袁泉, 等.2014年7月4日洞庭湖大暴雨过程分析.安徽农业科学, 2015, 43(3):244-246;250. doi: 10.3969/j.issn.0517-6611.2015.03.083 [25] Lee B D, Jewett B F, Wilhelmso R B.The 19 April 1996 Illinois tornado outbreak.Part Ⅱ:Cell mergers and associated tornado incidence.Wea Forecasting, 2006, 21:449-464. doi: 10.1175/WAF943.1 [26] 俞小鼎, 姚秀萍, 熊廷南, 等.多普勒天气雷达原理与业务应用(第1版).北京:气象出版社, 2006. [27] 郑艳, 俞小鼎, 任福民, 等.海南一次超级单体引发的强烈龙卷过程观测分析.气象, 2017, 43(6):675-685. http://d.old.wanfangdata.com.cn/Periodical/qx201706004 [28] Wilkins E M, Sasaki Y K, Gerber G E, et al.Numerical simulation of the lateral interactions between buoyant clouds.J Atmos Sci, 1976, 33:1321-1329. doi: 10.1175/1520-0469(1976)033<1321:NSOTLI>2.0.CO;2 [29] Kogan Y L, Shapiro A.The simulation of a convective cloud in a 3D model with explicit microphysics.Part Ⅱ:Dynamical and microphysical aspects of cloud merger.J Atmos Sci, 1996, 53:2525-2545. doi: 10.1175/1520-0469(1996)053<2525:TSOACC>2.0.CO;2 [30] Lemon L R, Doswell III C A.Severe thunderstorm evolution and mesocyclone structure as related to tornadogenesis.Mon Wea Rev, 1979, 107:1184-1197. doi: 10.1175/1520-0493(1979)107<1184:STEAMS>2.0.CO;2