留言板

尊敬的读者、作者、审稿人, 关于本刊的投稿、审稿、编辑和出版的任何问题, 您可以本页添加留言。我们将尽快给您答复。谢谢您的支持!

姓名
邮箱
手机号码
标题
留言内容
验证码

长沙机场阵列天气雷达地物识别算法

魏万益 马舒庆 杨玲 甄小琼 吕寺炜

魏万益, 马舒庆, 杨玲, 等. 长沙机场阵列天气雷达地物识别算法. 应用气象学报, 2020, 31(3): 339-349. DOI:  10.11898/1001-7313.20200308..
引用本文: 魏万益, 马舒庆, 杨玲, 等. 长沙机场阵列天气雷达地物识别算法. 应用气象学报, 2020, 31(3): 339-349. DOI:  10.11898/1001-7313.20200308.
Wei Wanyi, Ma Shuqing, Yang Ling, et al. Ground clutter detection algorithm for array weather radar at Changsha airport. J Appl Meteor Sci, 2020, 31(3): 339-349. DOI:   10.11898/1001-7313.20200308.
Citation: Wei Wanyi, Ma Shuqing, Yang Ling, et al. Ground clutter detection algorithm for array weather radar at Changsha airport. J Appl Meteor Sci, 2020, 31(3): 339-349. DOI:   10.11898/1001-7313.20200308.

长沙机场阵列天气雷达地物识别算法

DOI: 10.11898/1001-7313.20200308
资助项目: 

国家自然科学基金国家重大科研仪器研制(部委推荐)项目 31727901

详细信息
    通信作者:

    杨玲, cimyang@cuit.edu.cn

Ground Clutter Detection Algorithm for Array Weather Radar at Changsha Airport

  • 摘要: 地物杂波是影响雷达产品准确性的重要因素。该文提出了一种改进的基于模糊逻辑的阵列天气雷达地物识别算法。在Kessinger模糊逻辑基础上,加入回波强度时间变化量(time variability of reflectivity factor,TVR)参数,利用收集到的雷达数据统计出各输入参数的概率分布,确定隶属函数;分析TVR参数对地物识别算法的贡献,并在不同天气情况下进行识别算法有效性验证。试验结果表明:加入TVR参数,长沙机场阵列天气雷达地物识别准确率最大可提高4%,降水识别误判率最多可降低2%。该文提出的地物杂波识别算法,无降水时,地物识别准确率达96%;有降水时,地物识别准确率达92%;降水回波误判为地物杂波的误判率约为10%,能较好地区分降水回波和地物杂波。
  • 图  1  孤立点滤波前(a)、滤波后(b)回波强度

    Fig. 1  Intensity echo of isolated point before filtering(a) and after filtering(b)

    图  2  地物和降水回波各特征参数的概率分布

    (a)MDVE,(b)MDSW,(c)TDBZ,(d)GDBZ,(e)SPIN,(f)TVR

    Fig. 2  Probability distributions of ground clutter and precipitation echo

    (a)MDVE, (b)MDSW, (c)TDBZ, (d)GDBZ, (e)SPIN, (f)TVR

    图  3  地物识别的隶属函数

    (a)MDVE,(b)TDBZ,(c)GDBZ,(d)SPIN,(e)TVR

    Fig. 3  Membership functions of ground clutter detection

    (a)MDVE, (b)TDBZ, (c)GDBZ, (d)SPIN, (e)TVR

    图  4  2019年7月31日10:21子阵1在1.4°仰角的回波强度(相邻距离圈间距为5 km) (a)地物识别前,(b)地物识别后

    Fig. 4  The echo intensity of subarray 1 at 1.4° elevation angle at 1027 BT 31 Jul 2019 (the distance between adjacent rang rings is 5 km) (a)before ground clutter detection, (b)after ground clutter detection

    图  5  2019年6月21日15:17子阵1在1.4°仰角的回波强度和径向速度(相邻距离圈间距为5 km) (a)识别前的回波强度,(b)识别后的回波强度,(c)识别前的径向速度,(d)识别后的径向速度

    Fig. 5  The echo intensity and radial velocity of subarray 1 at 1.4°elevation angle at 1517 BT 21 Jun 2019 (the distance between adjacent range rings is 5 km) (a)echo intensity before ground clutter detection, (b)echo intensity after ground clutter detection, (c)radial velocity before ground clutter detection, (d)radial velocity after ground clutter detection

    图  6  2019年7月21日13:57子阵2在1.4°仰角的回波强度和径向速度(相邻距离圈间距为5 km) (a)识别前的回波强度,(b)识别后的回波强度,(c)识别前的径向速度,(d)识别后的径向速度

    Fig. 6  The echo intensity and radial velocity of subarray 2 at 1.4°elevation angle at 1357 BT 21 Jul 2019 (the distance between adjacent range rings is 5 km) (a)echo intensity before ground clutter detection, (b)echo intensity after ground clutter detection, (c)radial velocity before ground clutter detection, (d)radial velocity after ground clutter detection

    图  7  2019年7月21日13:57子阵2在2.8°仰角的回波强度和径向速度(相邻距离圈间距为5 km) (a)识别前的回波强度,(b)识别后的回波强度,(c)识别前的径向速度,(d)识别后的径向速度

    Fig. 7  The echo intensity and radial velocity of subarray 2 at 2.8° elevation angle at 1357 BT 21 Jul 2019 (the distance between adjacent range rings is 5 km) (a)echo intensity before ground clutter detection, (b)echo intensity after ground clutter detection, (c)radial velocity before ground clutter detection, (d)radial velocity after ground clutter detection

    表  1  地物识别准确率和降水识别误判率

    Table  1  Accuracy of ground clutter detection and error rate of precipitation detection

    阈值 地物识别准确率/% 降水识别误判率/%
    采用TVR 未采用TVR 采用TVR 未采用TVR
    0.40 96 93 12 14
    0.45 91 87 10 11
    0.50 80 80 7 8
    0.55 75 72 4 4
    0.60 64 63 3 3
    下载: 导出CSV

    表  2  无降水情况下地物识别算法效果

    Table  2  Accuracy of ground clutter detection algorithm under no precipitation condition

    子阵 地物识别准确率/%
    1 96
    2 93
    3 94
    下载: 导出CSV

    表  3  混合性降水算法识别效果

    Table  3  Accuracy of ground clutter detection and error rate of precipitation detection under mixed prcipitation condition

    子阵 地物识别准确率/% 降水识别误判率/%
    1 94 9
    2 92 10
    3 91 10
    下载: 导出CSV

    表  4  对流性降水算法识别效果

    Table  4  Accuracy of ground clutter detection and error rate of precipitation detection under convective precipitation condition

    子阵 地物识别准确率/% 降水识别误判率/%
    1 92 10
    2 91 12
    3 94 10
    下载: 导出CSV
  • [1] Smith P.Siting Considerations for Weather Radars//Preprints, 15th Conference on Radar Meteorology.Champaign-Urbana, IL, American Meteorological Society, 1972: 99-100.
    [2] Mann D, Evans J E, Merritt M W.Clutter Suppression for Low Altitude Wind Shear Detection by Doppler Weather Radars//Preprints, 23rd Conference on Radar Meteorology, Snowmass, CO, American Meteorological Society, 1986: R9-R13.
    [3] Michelson D B, Andersson T.Identification and Suppression of Anomalous Propagation Echoes in Two-dimensional Radar Images//Preprints, 27th International Conference on Radar Meteorology, Vail, CO, American Meteorological Society, 1995: 665-658.
    [4] Torres S, Zrnic D.Ground clutter canceling with a regression filter.J Atmos Ocean Tech, 1999, 16(10):1364-1372. http://www.wanfangdata.com.cn/details/detail.do?_type=perio&id=wQ0z/bjrMeCV3n6F1KbR4lb3tZ8RkExHthP2NiSYQYk=
    [5] Passarelli R E.Autocorrelation Techniques for Ground Clutter Rejection//Preprints, 20th Conference on Radar Meteorology, Boston, MA, American Meteorological Society, 1981: 308-313.
    [6] Schmid W, Hogl D, Joss J.Test of Clutter Suppression Techniques in the Swiss Alps//Preprints, 25th InternationalConference on Radar Meteorology, Paris, France, American Meteorological Society, 1991: 875-878.
    [7] Siggia A D, Passarelli R E.Gaussian Model Adaptive Processing (GMAP) for Improved Ground Clutter Cancellation and Moment Calculation//Preprints, 3rd European Conference on Radar in Meteorology and Hydrology, Visby, Gotland, Sweden, ERAD, 2004: 67-73.
    [8] Li Y, Zhang G, Doviak R J, et al.A new approach to detect ground clutter mixed with weather signals.IEEE Transactions on Geoscience and Remote Sensing, 2013, 51(4):2373-2387. http://www.wanfangdata.com.cn/details/detail.do?_type=perio&id=1f84041aa2495aa71f72efc07c158ee0
    [9] Steiner M, SmithJ.Use of three-dimensional reflectivity structure for automated detection and removal of nonprecipitating echoes in radar data.J Atmos Ocean Tech, 2002, 19(5):673-686. http://www.wanfangdata.com.cn/details/detail.do?_type=perio&id=21ba06b231021e0736bfd5e95a5ed986
    [10] Zhang J, Wang S, Clarke B.WSR-88D Reflectivity Quality Control Using Horizontal and Vertical Reflectivity Structure//Preprints, 11th Conferenceon Aviation, Range and Aerospace Meteorology, Hyannis, MA, American Meteorological Society, 2004: 5.
    [11] Lakshmanan V, Hondl K, Stumpf G, et al. Quality Control of Weather Radar Data Using Texture Features and a Neural Network//Preprints, 31st Conference on Radar Meteorology, Seattle, Washington. American Meteorological Society, 2003: 522-525.
    [12] Lakshmanan V, Fritz A, Smith T, et al.Anautomated technique to quality control radar reflectivity data.J Appl Meteorol Climatol, 2007, 46(3):288-305. http://citeseerx.ist.psu.edu/viewdoc/summary?doi=10.1.1.383.6893
    [13] Kessinger C, Ellis S, Vanandel J, et al.The AP Clutter Mitigation Scheme for the WSR-88D//Preprints, 31st Conference on Radar Meteorology, Seattle, Washington.American Meteorological Society, 2003: 526.
    [14] Ferrer M B, Torres D S, Alexandri C C, et al.A fuzzy logic technique for identifying nonprecipitatingechoes in radar scans.J Atmos Ocean Tech, 2006, 23(9):1157-1180. doi:  10.1175/JTECH1914.1
    [15] Cho Y H, Lee G W, Kim K E, et al.Identification and removal ofground echoes and anomalous propagation using the characteristics of radar echoes.J Atmos Ocean Tech, 2006, 23(9):1206-1222. doi:  10.1175/JTECH1913.1
    [16] 刘黎平, 吴林林, 杨引明.基于模糊逻辑的分步式超折射地物回波识别方法的建立和效果分析.气象学报, 2007, 65(2):252-260. http://d.old.wanfangdata.com.cn/Periodical/qxxb200702011
    [17] 江源, 刘黎平, 庄薇.多普勒天气雷达地物回波特征及其识别方法改进.应用气象学报, 2009, 20(2):203-213. http://qikan.camscma.cn/jamsweb/article/id/20090210
    [18] 李丰, 刘黎平, 王红艳, 等.S波段多普勒天气雷达非降水气象回波识别.应用气象学报, 2012, 23(2):147-158. http://qikan.camscma.cn/jamsweb/article/id/20120203
    [19] 李丰, 刘黎平, 王红艳, 等.C波段多普勒天气雷达地物识别方法.应用气象学报, 2014, 25(2):158-167. http://qikan.camscma.cn/jamsweb/article/id/20140205
    [20] Ruiz J J, Miyoshi T, Satoh S, et al.Aquality control algorithm for the Osaka phased array weather radar.SOLA, 2015, 11:48-52. https://www.jstage.jst.go.jp/article/sola/11/0/11_2015-011/_article/-char/ja/
    [21] 刘黎平, 吴翀, 汪旭东, 等.X波段一维扫描有源相控阵天气雷达测试定标方法.应用气象学报, 2015, 26(2):129-140. doi:  10.11898/1001-7313.20150201
    [22] 吴翀, 刘黎平, 汪旭东, 等.相控阵雷达扫描方式对回波强度测量的影响.应用气象学报, 2014, 25(4):406-414. http://qikan.camscma.cn/jamsweb/article/id/20140403
    [23] 杨金红, 高玉春, 程明虎, 等.相控阵天气雷达波束特性.应用气象学报, 2009, 20(1):119-123. http://qikan.camscma.cn/jamsweb/article/id/20090116
    [24] 马舒庆, 陈洪滨, 王国荣, 等.阵列天气雷达设计与初步实现.应用气象学报, 2019, 30(1):3-14. doi:  10.11898/1001-7313.20190101
    [25] 程周杰, 刘宪勋, 朱亚平.双偏振雷达对一次水凝物相态演变过程的分析.应用气象学报, 2009, 20(5):594-601. http://qikan.camscma.cn/jamsweb/article/id/20090511
    [26] 赵瑞金, 刘黎平, 张进.硬件故障导致雷达回波错误数据质量控制方法.应用气象学报, 2015, 26(5):578-589. doi:  10.11898/1001-7313.20150507
    [27] 张秉祥, 李国翠, 刘黎平, 等.基于模糊逻辑的冰雹天气雷达识别算法.应用气象学报, 2014, 25(4):415-426. http://qikan.camscma.cn/jamsweb/article/id/20140404
  • 加载中
图(7) / 表(4)
计量
  • 摘要浏览量:  3824
  • HTML全文浏览量:  576
  • PDF下载量:  75
  • 被引次数: 0
出版历程
  • 收稿日期:  2019-11-01
  • 修回日期:  2020-01-03
  • 刊出日期:  2020-05-31

目录

    /

    返回文章
    返回