The Effect Assessment of Wind Field Inversion Based on WPR in Precipitation
-
摘要: 风廓线雷达(wind profile radar,WPR)因具有高时空分辨率特点,成为当前短时临近预报的重要参考工具。降水时WPR同时接收大气湍流回波和降水粒子散射回波,现有技术不能有效分离叠加在一起的湍流信号和降水信号,导致降水期间风廓线雷达反演的风场数据严重缺失或失真。根据风廓线雷达探测技术原理及降水天气的功率谱特点,提出了降水天气时风廓线雷达湍流信号提取方法(WPR-HW),并选取2015—2018年天津10次降水过程对WPR-HW方法进行模式检验及个例效果评估。结果表明:WPR-HW方法对改善降水期间风廓线雷达风场数据缺失问题效果明显,在选取的10次降水过程中,目前通用的风廓线雷达风场反演方法(WIND)风场数据平均缺失率为25.4%,WPR-HW方法未出现风场数据缺失现象;WPR-HW方法较WIND方法反演风场数据可信度有显著提高,反演数据与再分析数据的风速均方根误差由WIND方法的2.3 m·s-1降至WPR-HW方法的1.6 m·s-1,风向均方根误差由WIND方法的45°降至WPR-HW方法的22°,从而验证WPR-HW方法在降水期间适用。Abstract:
Wind profile radar(WPR), taking atmospheric turbulence of clear air as main detecting object, is the main reference tool currently for short-time forecast because of its high spatial and temporal resolution. In the past few decades, WPR spectral data processing mainly focuses on the wind spectrum estimation. In recent years, with the use of WPR data expansion, there are increasingly high demand for WPR data accuracy, but because of ground clutter and external noise, flying objects, the presence of disturbances such as precipitation and limitations of Fourier Transform method itself, there are often multiple overlapped peaks, which makes it difficult to judge the spectral meaning, resulting in large error detection products. WPR has a large dynamic reception range, so it can receive the echo of scattering of atmosphere turbulence and precipitation particles simultaneously. However, the superimposed spectrum of atmosphere and precipitation cannot be separated effectively. In the meantime, the wind field calculation is based on the hypothesis of local uniform and isotropy, which cannot be met during precipitation with great spatial variability and leads to data of WPR serious deficiency or distortion. It's of great importance to establish an effective spectral extraction programs under different weather conditions to improve the accuracy of spectral estimation for wind field data after the inversion, thereby enhancing the wind profile accuracy of radar detection.A method of WPR-HW is developed for the case of precipitation according to the principle of WPR detection and the feature of spectrum, and then the effectiveness of the method is tested using ECMWF ERA Interim data. 10 precipitation cases in Tianjin are investigated to verify the significance of wind field data processed by WPR-HW in severe convection prediction. Results show that the WPR-HW has significant advantage compared with the recent WIND method (the universal method of wind field inversion from WPR) in integrity and reliability. For the wind field data in 10 precipitation cases, the leakage rate of WIND is 25.4% while that of WPR-HW is 0. The root mean square error in wind speed of WPR-HW is 1.6 m·s-1 while that of WIND is 2.3 m·s-1. The RMSE in wind direction of WPR-HW is 22° while that of WIND is 45°. The wind field processed by WPR-HW is able to make up for the deficiency and distortion of WPR data effectively in precipitation, which thus benefit to improve the timeliness and accuracy in strong convective weather forecasting.
-
Key words:
- WPR;
- power spectrum;
- wind field
-
表 1 风廓线雷达参数
Table 1 Parameters of WPR
参数 低模式 高模式 起始采样库的高度/m 60 600 宝坻站终止采样库的高度/m 1200 5280 静海站终止采样库的高度/m 1500 7080 距离库长/m 60 120 相干累积 100 64 fft点数 256 512 谱平均数 8 4 表 2 10次降水过程WPR-HW方法风场反演效果统计
Table 2 Statistics of case evaluation for data processed WPR-HW
降水日期 降水量级 数据缺失率/% WPR-HW方法反演风场特征 WPR-HW方法降水预报提前量/min WIND方法 WPR-HW方法 2015-09-04 大雨 26 0 风向切变 105 2016-06-27 小雨 20 0 风向切变 150 2016-07-20 暴雨 28 0 边界层急流 15 2016-08-07 大雨 30 0 边界层急流,风速辐合 60 2017-05-22 小雨 21 0 风向切变 150 2017-06-22 小雨 23 0 边界层急流 150 2017-06-23 中到大雨 27 0 边界层急流,风向切变 15 2017-07-06 暴雨 22 0 边界层急流,风速辐合 30 2017-08-02 大雨 26 0 边界层急流 45 2018-08-13 暴雨 31 0 风向切变,龙卷 30 -
[1] 郑永光, 陶祖钰, 俞小鼎.对流天气预报的一些基本问题.气象, 2007, 43(6):641-652. http://d.old.wanfangdata.com.cn/Periodical/qx201706001 [2] 茅懋, 戴建华, 李佰平, 等, 不同类型强对流预报产品的目标对象检验与分析评价.气象, 2006, 42(4):389-397. http://d.old.wanfangdata.com.cn/Periodical/qx201604001 [3] 何平.相控阵风廓线雷达.北京:气象出版社, 2006. [4] Stanley G B, Barry E S, Eduard J S, et al.The value of wimd profiler data in US weather forecasting.Bull Amer Meter Soc, 2004, 85(12):1871-1886. doi: 10.1175/BAMS-85-12-1871 [5] 阮征, 李淘, 金龙, 等.大气垂直运动对雷达估测降水的影响.应用气象学报, 2017, 28(2):200-208. doi: 10.11898/1001-7313.20170207 [6] 杨新蕊, 马舒庆, 吴蕾.UHF风廓线雷达降水数据判别方法的比较与评价.大气科学学报, 2010, 33(5):576-581. http://d.old.wanfangdata.com.cn/Periodical/njqxxyxb201005009 [7] 腾志遥, 贺红兵.风廓线雷达数据质量控制方法.雷达与对抗, 2008, 1:10-15. http://d.old.wanfangdata.com.cn/Periodical/kxycf2015Z2522 [8] Steiner A, Richner H.Separation of clear-air echoes from precipitation echoes in UHF wind profiler measurements.Ann Geophys, 1994, 12:497-505. http://cn.bing.com/academic/profile?id=441175a655c7e887163cdcea9b96297c&encoded=0&v=paper_preview&mkt=zh-cn [9] Mcdonald A J, Carey-SMITH T K, Hooper D A, et al.The effect of precipitation on wind-profiler clear air returns.Ann Geophys, 2004, 22:3959-3970. http://d.old.wanfangdata.com.cn/OAPaper/oai_doaj-articles_7911eef43253d7f01420f0da4334bb91 [10] Ralph F M, Neiman P J, Uffieux D.Precipitation identification from radar wind profiler spectral moment data:Vertical velocity histograms, velocity variance, and signal power-vertical velocity correlation.J Atmos Oceanic Tech, 1995, 13:545-599. doi: 10.1175/1520-0426%281996%29013%3C0545%3APIFRWP%3E2.0.CO%3B2 [11] Schafer R, Avery S K, Gage K S, et al.Improving wind profiler-measured winds using coplanar spectral averaging.J Atmos Oceanic Technol, 2004, 21(11):1671-1678. http://d.old.wanfangdata.com.cn/NSTLQK/NSTL_QKJJ025574480/ [12] 廖菲, 邓华, 候灵.降水条件下风廓线雷达数据质量分析及处理.热带气象学报, 2016, 32(5):588-596. http://d.old.wanfangdata.com.cn/Periodical/rdqxxb201605002 [13] 王晓蕾.风廓线雷达探测降水云体中雨滴谱的试验研究.南京: 南京信息工程大学, 2009. http://www.cnki.com.cn/Article/CJFDTotal-GYQX201002026.htm [14] 林晓萌, 何平, 黄兴友.一种抑制降水对风廓线雷达水平风干扰的方法.应用气象学报, 2015, 26(1):66-75. doi: 10.11898/1001-7313.20150107 [15] 尹忠海, 张沛源.利用卡尔曼滤波校准方法估算区域降水量.应用气象学报, 2005, 16(2):213-219. http://qikan.camscma.cn/jamsweb/article/id/20050226 [16] 何平, 李柏, 吴蕾, 等.确定风廓线雷达功率谱噪声功率方法.应用气象学报, 2013, 24(3):297-303. http://qikan.camscma.cn/jamsweb/article/id/20130305 [17] 孙豪, 刘黎平, 郑佳锋.不同波段垂直指向雷达功率谱密度对比.应用气象学报, 2017, 28(4):447-457. doi: 10.11898/1001-7313.20170406 [18] 姚文, 马颖, 高丽娜.L波段与59-701探空系统相对湿度对比分析.应用气象学报, 2017, 28(2):218-226. http://qikan.camscma.cn/jamsweb/cn/search [19] 曾晓青, 薛峰, 姚丽, 等.针对模式风场的格点预报订正方案对比.应用气象学报, 2019, 30(1):49-60. doi: 10.11898/1001-7313.20190105 [20] 张小雯, 郑永光, 吴蕾, 等.风廓线雷达在天气业务中的应用现状与展望.气象科技, 2017, 45(2):285-297. http://www.wanfangdata.com.cn/details/detail.do?_type=perio&id=qxkj201702013 [21] 刘梦娟, 刘舜.上海组网风廓线雷达数据质量评估.气象, 2016, 42(8):962-970. http://d.old.wanfangdata.com.cn/Periodical/qx201608006 [22] 罗红艳, 杨红龙, 卢超, 等.深圳风廓线雷达与气象梯度塔对风速观测的对比分析.广东气象, 2017, 39(6):72-76. http://d.old.wanfangdata.com.cn/Periodical/gdqx201706020 [23] 谭桂容, 范艺媛, 牛若芸.江淮地区强降水分型及其环流演变.应用气象学报, 2018, 29(4):396-409. doi: 10.11898/1001-7313.20180402 [24] 孙丽娜, 陈楠, 李妙英, 等.南京地区一次短时强降水风廓线雷达资料特征分析.陕西气象, 2017(5):13-16. http://d.old.wanfangdata.com.cn/Periodical/sxqx201705003 [25] 马淑萍, 王秀明, 俞小鼎.极端雷暴大风的环境参量特征.应用气象学报, 2019, 30(3):292-301. doi: 10.11898/1001-7313.20190304