Spatial-temporal Distribution of Apples with Different Drought Levels in Northern China
-
摘要: 为定量评估我国北方地区苹果不同干旱等级灾害时空分布特征,以我国苹果主产地为研究区域,对前人提出的干旱指数进行等级划分,结合历史灾情资料,对划分的等级进行验证;利用验证后的干旱指数,明确1981—2016年苹果不同干旱等级时空变化特征。结果表明:划分的干旱指数等级能够较好地反映我国北方地区苹果实际干旱特征;各生育阶段甘肃省中北部、宁夏回族自治区各年代以重旱发生为主,山西省、陕西省、山东省以及河南省干旱等级随年代变化较大;重旱发生面积在果树萌动-花芽萌动和成熟-落叶生育阶段1981—2000年随年代变化逐渐增加;各生育阶段无旱和重旱高频区频率高于50%,轻旱和中旱高频区频率高于30%;1981—2016年轻旱发生范围最大,果树萌动-花芽萌动生育阶段的重旱和盛花-成熟生育阶段的中旱站次比呈显著上升趋势。研究区域西北地区干旱严重,且发生频率较高。Abstract: Taking the major apple producing provinces in northern China as the research area, spatial-temporal distribution characteristics of different levels of apple drought during different growing periods are quantitatively evaluated. The drought index is graded, and historical disaster data collected are used to count disaster samples of different drought levels during different growth stages of apple, which verifies the rationality of the drought index level. Then the spatial-temporal distribution of different levels of drought, drought occurrence frequency, and occurrence range of apples during different eras in northern China are analyzed based on the validated drought grade index. Results show that among 46 total samples, the fully matched and basically matched samples account for 85%. Therefore, the drought grade index constructed can reflect the actual drought conditions reasonably for apples in northern China. Spatial distribution characteristics of drought levels decrease sequentially from north to south. The severe drought during different growing periods for apples is mainly distributed in northern and central of Gansu and northern Ningxia. The degree of drought changes greatly with the change of years in north central Shanxi from fruit tree sprouts to flower buds sprout, in Shanxi, Shandong, north Shaanxi from flower buds sprout to flower full bloom, and in Henan from mature to fallen leaves. The area of severe drought gradually increases with changes of the years from 1981 to 2010 in fruit tree sprouts to flower buds sprout and mature to fallen leaves. The frequency of no drought increases from north to south and the high frequency areas occur one time or above in two years. The frequency of severe drought decreases from north to south and the high frequency areas occur one time or above in two years. The light drought has dominated during the past 36 years in the study area, and the range of severe drought during the period from flower to maturity is larger than the other period. The ratio of drought occurring stations show a significant increasing trend for severe drought in the period from fruit tree sprouts to flower buds sprout and the moderate drought in the period from flower to maturity. The drought is severe and the frequency is high in the northwest. In the production of apples, a drought prevention plan should be prepared on the basis of drought warning, and attention should be paid to the timely response to drought at different growth stages.
-
表 1 苹果各生育阶段干旱指数等级
Table 1 Drought index grades for different growth stages of apples
等级 生育阶段 果树萌动-花芽萌动 花芽萌动-盛花 盛花-成熟 成熟-落叶 无旱 0<D≤1.58 0<D≤1.42 0<D≤0.46 0<D≤0.92 轻旱 1.58<D≤6.02 1.42<D≤5.65 0.46<D≤0.74 0.92<D≤2.66 中旱 6.02<D≤17.07 5.65<D≤15.38 0.74<D≤1.05 2.66<D≤8.47 重旱 D>17.07 D>15.38 D>1.05 D>8.47 -
[1] 王璇, 刘军弟, 邵砾群, 等.我国苹果产业年度发展状况及其趋势与建议.中国果树, 2018(3):101-104;108. http://d.old.wanfangdata.com.cn/Periodical/zhongggs201803027 [2] 国家统计局.中国统计年鉴2018.北京:中国统计出版社, 2018. [3] 马遇伯, 李全新.中国苹果产业发展现状与前景——以陕西省白水县为例.农业生产展望, 2019(4):38-42. http://www.wanfangdata.com.cn/details/detail.do?_type=perio&id=zgnyzyhjwz201904009 [4] 刘军弟, 霍学喜, 韩明玉, 等.中国苹果产业发展现状及趋势分析.北方园艺, 2012(20):172-176. http://d.old.wanfangdata.com.cn/Periodical/bfyany201220056 [5] Endelbrecht B M J, Comita L S, Condit R, et al.Drought sensitivity shapes species distribution patterns in tropical forests.Nature, 2007, 447(7):80-82. http://cn.bing.com/academic/profile?id=018f12332ec8e2a94563725dfb288e23&encoded=0&v=paper_preview&mkt=zh-cn [6] 张可慧.全球气候变暖对京津冀地区极端天气气候事件的影响及防灾减灾对策.干旱区资源与环境, 2011, 30(10):122-125. http://d.old.wanfangdata.com.cn/Periodical/ghqzyyhj201110022 [7] 杨宏毅, 霍治国, 杨建莹, 等.江汉和江南西部春玉米涝渍指标及风险评估.应用气象学报, 2017, 28(2):237-246. doi: 10.11898/1001-7313.20170211 [8] 黄建平, 陈文, 温之平, 等.新中国成立70年以来的中国大气科学研究:气候与气候变化篇.中国科学(地球科学), 2019, 49(10):1607-1640. [9] 宋艳玲, 王建林, 田靳峰, 等.气象干旱指数在东北春玉米干旱监测中的改进.应用气象学报, 2019, 30(1):25-34. doi: 10.11898/1001-7313.20190103 [10] 李新和.干旱对苹果生长发育的影响及防御措施.现代农业科技, 2017(15):215-219. http://d.old.wanfangdata.com.cn/Periodical/ahny201715126 [11] 田俊, 霍治国, 刘丹, 等.江西省早稻雨洗花灾害时空变化及分区.应用气象学报, 2019, 30(5):608-618. doi: 10.11898/1001-7313.20190509 [12] 宋凯.两种灌水方式下苹果幼树的生长动态及需水规律的研究.泰安: 山东农业大学, 2014. [13] 邬定荣, 霍治国, 王培娟, 等.陕西苹果花期机理性预报模型的适用性评价.应用气象学报, 2019, 30(5):555-564. doi: 10.11898/1001-7313.20190504 [14] Passioura J B.Root and drought resistance.Agricultural Water Management, 1983, 7:265-280. http://d.old.wanfangdata.com.cn/NSTLQK/NSTL_QKJJ0220826635/ [15] 程瑞平, 束怀瑞, 顾曼如.水分胁迫对苹果果树生长和叶中矿质含量的影响(简报).植物生理学通讯, 1992, 28(1):32-34. [16] 曲桂敏, 李兴国, 赵飞, 等.水分胁迫对苹果叶片和新根显微结构的影响.园艺学报, 1999, 26(3):147-151. http://d.old.wanfangdata.com.cn/Periodical/yyxb199903002 [17] Farooq M, Wahid A, Kobayashi N, et al.Plant drought stress:Effects, mechanisms and management.Agronomy for Sustainable Development, 2009, 29(1):185-212. http://d.old.wanfangdata.com.cn/NSTLQK/NSTL_QKJJ0232174672/ [18] 韩晓毓, 张林森, 王俊峰, 等.不同苹果矮化砧木导水特性与水通道蛋白基因表达对干旱胁迫的响应.西北农业学报, 2015, 24(10):109-117. http://d.old.wanfangdata.com.cn/Periodical/xbnyxb201510016 [19] 王顺才, 邹养军, 马锋旺.干旱胁迫对3种苹果属植物叶片解剖结构、微形态特征及叶绿体超微结构的影响.干旱地区农业研究, 2014, 32(3):15-23. http://d.old.wanfangdata.com.cn/Periodical/ghdqnyyj201403003 [20] 王景红, 张勇, 刘璐.基于多尺度标准化降水指数的陕西苹果主产区气象干旱分析.气象, 2013, 39(12):1656-1662. http://d.old.wanfangdata.com.cn/Periodical/qx201312015 [21] 王景红, 柏秦凤, 梁轶, 等.陕西苹果干旱指数研究及基于县域单元的苹果干旱风险分布.气象科技, 2014, 42(3):516-523. http://www.wanfangdata.com.cn/details/detail.do?_type=perio&id=qxkj201403025 [22] 许彦平, 姚晓红, 袁雅萍, 等.农业气象灾害对甘肃天水苹果生产的影响.果树学报, 2009, 26(5):579-602. http://www.wanfangdata.com.cn/details/detail.do?_type=perio&id=gskx200905002 [23] 郭兆夏, 王景红, 柏秦凤, 等.陕西苹果幼果期干旱风险评估及区划.农业灾害研究, 2013, 3(8):57-59. http://d.old.wanfangdata.com.cn/Periodical/nyzhyj201308019 [24] 车向军, 张天峰, 任继帮, 等.气候资源变化对陇东地区苹果生产的影响.江苏农业科学, 2020, 48(1):128-133. http://d.old.wanfangdata.com.cn/Periodical/jsnykx202001023 [25] 程雪, 孙爽, 张方亮, 等.我国北方地区苹果干旱时空分布特征.应用气象学报, 2020, 31(1):63-73. doi: 10.11898/1001-7313.20200106 [26] 龚高法, 简慰民.我国植物物候期的地理分布.地理学报, 1983, 50(1):33-40. [27] 曾骧, 刘金铜.苹果与气象.北京:气象出版社, 1988. [28] 温克刚, 王建国, 孙典卿.中国气象灾害大典(山东卷).北京:气象出版社, 2006. [29] 温克刚, 李波, 孟庆楠.中国气象灾害大典(辽宁卷).北京:气象出版社, 2006. [30] 温克刚, 刘庆桐.中国气象灾害大典(山西卷).北京:气象出版社, 2006. [31] 黄丹青, 钱永甫.Community Climate Model 3模拟夏季极端降水的初步分析.南京大学学报(自然科学), 2007, 43(3):238-248. http://d.old.wanfangdata.com.cn/Periodical/njdxxb200703002 [32] 张桂香, 霍治国, 杨建莹, 等.江淮地区夏玉米洪涝灾害时空分布特征和风险分析.生态学杂志, 2017, 36(3):747-756. [33] 汪天颖, 霍治国, 杨建莹, 等.湖南晚稻洪涝过程等级指标构建与演变特征.应用气象学报, 2019, 30(1):35-48. doi: 10.11898/1001-7313.20190104 [34] 尚莹, 霍治国, 张蕾, 等.土壤相对湿度对冬小麦干热风灾害发生的影响.应用气象学报, 2019, 30(5):598-607. doi: 10.11898/1001-7313.20190508 [35] 王培娟, 霍治国, 杨建莹, 等.基于热量指数的东北春玉米冷害指标.应用气象学报, 2019, 30(1):13-24. doi: 10.11898/1001-7313.20190102 [36] 范雨娴, 霍治国, 杨宏毅, 等.湖南省油菜春季涝渍过程灾变判别指标.应用气象学报, 2018, 29(2):141-153. doi: 10.11898/1001-7313.20180202 [37] 赵锦, 杨晓光, 刘志娟, 等.全球气候变暖对中国种植制度的可能影响X:气候变化对东北三省春玉米气候适宜性的影响.中国农业科学, 2014, 47(16):3143-3156.