Spatio-temporal Characteristics of Boundary Layer Height Derived from Soundings
-
摘要: 基于2010—2018年我国119个站点L波段探空秒级资料,通过对位温廓线法所得边界层高度进行Kmeans聚类,将我国分为青藏地区、西北地区、中部地区和东部地区4个分区,分析我国边界层高度及边界层状态(对流、中性和稳定边界层)发生频率的变化特征。结果表明:2010—2018年08:00我国年平均边界层高度均为200~600 m,以稳定边界层为主,20:00年平均边界层高度从青藏地区、西北地区、中部地区到东部地区逐渐减小,其中青藏地区和西北地区全年以对流和中性边界层状态为主,中部地区和东部地区以中性边界层为主;4个分区的月平均边界层高度在08:00逐月变化不明显,且各分区间差异不大,而4个分区20:00月平均边界层高度随时间呈单峰结构,最大值出现在春夏季,最小值出现在秋冬季,从青藏地区、西北地区、中部地区到东部地区变化幅度逐渐减小;青藏地区、西北地区和中部地区的边界层高度日变化幅度春夏季大、秋冬季小,而东部地区边界层高度日变化在不同季节特征相近。Abstract: Using K-means cluster method, the whole country is divided into four regions (Qinghai-Tibet region, northwest region, central region and eastern region) by boundary layer height (BLH) derived from potential temperature gradient method based on L-band radar sounding secondly data of 119 stations from January 2010 to December 2018. Characteristics of BLH and frequency of different boundary layer state are investigated, including convective boundary layer (CBL), neutral boundary layer (NBL) and stable boundary layer (SBL), through their interannual, annual and diurnal variations respectively. Results show that there is no significant difference in the annual average BLH and the frequencies of different boundary layer states in four regions at 0800 BT and 2000 BT from 2010 to 2018. At 0800 BT, the annual average BLH is around 200-600 m and mainly in SBL. At 2000 BT, the annual average BLH in Qinghai-Tibet region is the highest (about 1500 m), followed by northwest region and central region (about 1000 m and 500 m), and that of eastern region is the lowest (about 400 m). Qinghai-Tibet region and northwest region are mainly with CBL and NBL, while central region and eastern region are mainly with NBL. Besides, the annual variation of BLH in four regions is similar at 0800 BT, but it's significantly different at 2000 BT. At 0800 BT, the difference of one-year monthly average BLH in four regions are not obvious, and there is no clear difference among these regions. But at 2000 BT, the monthly average BLH in each region reaches maximum in spring and summer, and minimum in autumn and winter. As for corresponding annual variation of different boundary layer state frequencies, SBL's frequency first increases then decreases while the frequencies of CBL and NBL first decrease then increase overall at 0800 BT and 2000 BT. And their turning point is in May to July. In general, the variation range of monthly average BLH and boundary layer state frequencies gradually descend from Qinghai-Tibet region, northwest region, central region to eastern region. The diurnal variations of BLH are different in four regions. In particular, the diurnal variations of Qinghai-Tibet region, northwestern region and central region show distinct seasonal difference. In Qinghai-Tibet region, the amplitude of diurnal variation can reach 2000-2300 m in spring and summer, but relatively weaker in autumn and winter. The diurnal variation in eastern region is similar in all seasons, and amplitudes are around 600 m.
-
图 1 2010—2018年我国月平均边界层高度聚类结果空间分布
(带圈站点为青藏地区、西北地区、中部地区和东部地区挑选的代表站点)
Fig. 1 The spatial distribution of cluster result of monthly average boundary layer height in China from 2010 to 2018
(circled stations are representative stations of Qinghai-Tibet region, northwest region, central region and eastern region)
图 3 2010—2018年青藏地区、西北地区、中部地区和东部地区不同边界层状态(对流、中性和稳定)平均发生频率
(线段表示2010—2018年平均发生频率的最大值和最小值)
Fig. 3 The average frequency of different boundary layer states(convective, neutral and stable) in Qinghai-Tibet region, northwest region, central region and eastern region from 2010 to 2018
(the segment denotes the maximum and minimum frequency)
图 5 2010—2018年不同边界层状态(对流、中性和稳定)平均发生频率逐月变化(a)08:00青藏地区,(b)08:00西北地区,(c)08:00中部地区,(d)08:00东部地区,(e)20:00青藏地区,(f)20:00西北地区,(g)20:00中部地区,(h)20:00东部地区
Fig. 5 Annual variation of different boundary layer states (convective, stable and neutral) average frequencies from 2010 to 2018 (a)Qinghai-Tibet region at 0800 BT, (b)northwest region at 0800 BT, (c)central region at 0800 BT, (d)eastern region at 0800 BT, (e)Qinghai-Tibet region at 2000 BT, (f)northwest region at 2000 BT, (g)central region at 2000 BT, (h)eastern region at 2000 BT
图 8 2010—2018年20:00青藏地区、西北地区、中部地区和东部地区各种边界层状态(对流、中性和稳定)的平均边界层高度逐月变化(虚线表示平均值)
Fig. 8 The annual variation of average boundary layer height in different boundary layer states(convective, neutral and stable) in Qinghai-Tibet region, northwest region, central region and eastern region at 2000 BT from 2010 to 2018(the dashed line denotes the average)
-
[1] Stull R B.边界层气象学导论.北京:气象出版社, 1991:1-21. [2] 赵鸣, 苗曼倩.边界层气象学教程.北京:气象出版社, 1991:17-33. [3] 刘绕, 李煜斌, 高志球.稻麦轮作农田区大气边界层高度的日变化和季节特征.气象科技, 2017, 45(3):526-534. http://d.old.wanfangdata.com.cn/Periodical/qxkj201703018 [4] 肖贤俊, 刘还珠, 宋振鑫, 等.2002年3月19日沙尘暴爆发条件分析.应用气象学报, 2004, 15(1):1-9. http://qikan.camscma.cn/jamsweb/article/id/20040101 [5] 张强, 王胜.论特强沙尘暴(黑风)的物理特征及其气候效应.中国沙漠, 2005, 25(5):675-681. http://www.cnki.com.cn/Article/CJFDTotal-ZGSS200505009.htm [6] 何立富, 李峰, 李泽椿.华北平原一次持续性大雾过程的动力和热力特征.应用气象学报, 2006, 17(2):160-168. http://qikan.camscma.cn/jamsweb/article/id/20060228 [7] 吴庆梅, 刘卓, 王国荣, 等.一次华北暴雨过程中边界层东风活动及作用.应用气象学报, 2015, 26(2):160-172. doi: 10.11898/1001-7313.20150204 [8] 林宝亭, 陆秋霖, 林确略, 等.一次玉林地区漏报的强双雨带影响的过程分析.气象, 2020, 46(3):313-324. http://d.old.wanfangdata.com.cn/Periodical/qx202003003 [9] 贾梦唯, 赵天良, 张祥志, 等.南京主要大气污染物季节变化及相关气象分析.中国环境科学, 2016, 36(9):2567-2577. http://d.old.wanfangdata.com.cn/Periodical/zghjkx201609002 [10] 张雅斌, 林琳, 吴其重, 等."13·12"西安重污染气象条件及影响因素.应用气象学报, 2016, 27(1):35-46. doi: 10.11898/1001-7313.20160104 [11] 贾小芳, 颜鹏, 孟昭阳, 等.2016年11-12月北京及周边重污染过程特征.应用气象学报, 2019, 30(3):302-315. doi: 10.11898/1001-7313.20190305 [12] 胡非, 洪钟祥, 雷孝恩.大气边界层和大气环境研究进展.大气科学, 2003, 27(4):712-728. doi: 10.3878/j.issn.1006-9895.2003.04.18 [13] Deardorff J W.Parameterization of the planetary boundary layer for use in general circulation models.Mon Wea Rev, 1972, 14(2):215-226. doi: 10.1175/1520-0493%281972%29100%3C0093%3APOTPBL%3E2.3.CO%3B2 [14] Arakawa A, Schubert W H.Interaction of a cumulus cloud ensemble with the large-scale environment, Part Ⅰ.J Atmos Sci, 1974, 31(3):674-701. doi: 10.1175/1520-0469(1974)031<0674:IOACCE>2.0.CO;2 [15] Suarez M J, Arakawa A, Randall D A.The parameterization of the planetary boundary layer in the UCLA general circulation model:Formulation and results.Mon Wea Rev, 1983, 111(11):2224-2243. doi: 10.1175/1520-0493(1983)111<2224:TPOTPB>2.0.CO;2 [16] Holtslag A A M, Nieuwstadt F T M.Scaling the atmospheric boundary layer.Bound-Layer Meteor, 1986, 36(1/2):201-209. http://d.old.wanfangdata.com.cn/OAPaper/oai_doaj-articles_5fca4c78b0884865cf69e24721e28632 [17] 程水源, 张宝宁, 白天雄, 等.北京地区大气混合层高度的研究及气象特征.环境科学丛刊, 1992(4):46-52. http://www.cnki.com.cn/Article/CJFD1992-HJJZ199204006.htm [18] Seibert P, Beyrich F, Gryning S E, et al.Review and intercomparison of operational methods for the determination of the mixing height.Atmos Environ, 2000, 34(7):1001-1027. doi: 10.1016/S1352-2310(99)00349-0 [19] Lin J T, Youn D, Liang X Z, et al.Global model simulation of summertime U.S.ozone diurnal cycle and its sensitivity to PBL mixing, spatial resolution, and emissions.Atmos Environ, 2008, 42(36):8470-8483. http://www.wanfangdata.com.cn/details/detail.do?_type=perio&id=85f5973000733ba66c4b0924264eb7be [20] Konor C S, Boezio G C, Mechoso C R, et al.Parameterization of PBL processes in an atmospheric general circulation model:Description and preliminary Assessment.Mon Wea Rev, 2009, 137(3):1061-1082. doi: 10.1175/2008MWR2464.1 [21] 杨富燕.大气边界层高度的地基遥感探测和数值模拟.南京: 南京大学, 2015. http://d.wanfangdata.com.cn/Thesis/Y2951053 [22] Garratt J R, Dessler A J, Houghton J T, et al.The Atmospheric Boundary Layer.Cambridge:Cambridge University Press, 1992. [23] 乔娟.西北干旱区大气边界层时空变化特征及形成机理研究.北京:中国气象科学研究院, 2009. [24] 张强, 王胜.西北干旱区夏季大气边界层结构及其陆面过程特征.气象学报, 2008, 66(4):599-608. http://d.old.wanfangdata.com.cn/Periodical/qxxb200804013 [25] 杨飞跃.半干旱区边界层高度的确定方法比较及特征研究.兰州: 兰州大学, 2018. http://cdmd.cnki.com.cn/Article/CDMD-10730-1018979634.htm [26] 徐桂荣, 崔春光, 周志敏, 等.利用探空资料估算青藏高原及下游地区大气边界层高度.暴雨灾害, 2014, 33(3):217-227. http://d.old.wanfangdata.com.cn/Periodical/hbqx201403004 [27] 涂静, 张苏平, 程相坤, 等.黄东海大气边界层高度时空变化特征.中国海洋大学学报(自然科学版), 2012, 42(4):7-18. http://d.old.wanfangdata.com.cn/Periodical/qdhydxxb201204002 [28] Liu S, Liang X Z.Observed diurnal cycle climatology of planetary boundary layer height.J Climate, 2010, 23(21):5790-5809. doi: 10.1175/2010JCLI3552.1 [29] 姚雯, 马颖, 徐文静.L波段电子探空仪相对湿度误差研究及其应用.应用气象学报, 2008, 19(3):356-361. doi: 10.3969/j.issn.1001-7313.2008.03.012 [30] 马颖, 姚雯, 黄炳勋.59型与L波段探空仪温度和位势高度记录对比.应用气象学报, 2010, 21(2):214-220. doi: 10.3969/j.issn.1001-7313.2010.02.011 [31] 奉超.L波段雷达标定及误差分析.气象研究与应用, 2008, 28(3):4-5. http://d.old.wanfangdata.com.cn/Periodical/gxqx2007z3003 [32] 姚雯, 马颖, 高丽娜.L波段与59-701探空系统相对湿度对比分析.应用气象学报, 2017, 28(2):218-226. doi: 10.11898/1001-7313.20170209 [33] 李芳芳, 陈起英, 吴泓锟.基于秒级探空资料的中国地区浮力频率分布.应用气象学报, 2019, 30(5):629-640. doi: 10.11898/1001-7313.20190511 [34] Anil K J.Data clustering:50 years beyond K-means.Pattern Recognition Letters, 2010, 31(8):651-666. doi: 10.1016/j.patrec.2009.09.011 [35] 吴夙慧, 成颖, 郑彦宁, 等.K-means算法研究综述.数据分析与知识发现, 2011, 27(5):28-35. http://d.old.wanfangdata.com.cn/Periodical/dzsjgc201207008