留言板

尊敬的读者、作者、审稿人, 关于本刊的投稿、审稿、编辑和出版的任何问题, 您可以本页添加留言。我们将尽快给您答复。谢谢您的支持!

姓名
邮箱
手机号码
标题
留言内容
验证码

预估临边探测大气温度和水汽廓线的反演精度

宗雪梅

宗雪梅. 预估临边探测大气温度和水汽廓线的反演精度. 应用气象学报, 2020, 31(4): 471-481. DOI: 10.11898/1001-7313.20200409..
引用本文: 宗雪梅. 预估临边探测大气温度和水汽廓线的反演精度. 应用气象学报, 2020, 31(4): 471-481. DOI: 10.11898/1001-7313.20200409.
Zong Xuemei. Estimating the inversion accuracy of atmospheric temperature and water vapor profile under limb sounding. J Appl Meteor Sci, 2020, 31(4): 471-481. DOI:  10.11898/1001-7313.20200409.
Citation: Zong Xuemei. Estimating the inversion accuracy of atmospheric temperature and water vapor profile under limb sounding. J Appl Meteor Sci, 2020, 31(4): 471-481. DOI:  10.11898/1001-7313.20200409.

预估临边探测大气温度和水汽廓线的反演精度

DOI: 10.11898/1001-7313.20200409
资助项目: 

国家自然科学基金面上项目 41675032

国家重点研究发展计划 2016YFB0500602

详细信息
    通信作者:

    宗雪梅, zongxm@mail.iap.ac.cn

Estimating the Inversion Accuracy of Atmospheric Temperature and Water Vapor Profile Under Limb Sounding

  • 摘要: 针对在研仪器——大气辐射超高光谱探测仪的临边探测模式,模拟计算了大气温度和水汽的权重函数。以此为基础,利用信息量和权重函数线性化方法,结合仪器的可探测亮温阈值0.3 K,计算并分析6种大气状态下,大气温度和水汽混合比廓线在不同反演精度条件下可获得的光谱通道数,在满足最佳光谱通道数200的要求下,理论上预估其反演精度。温度廓线整体反演精度为0.6 K,水汽混合比廓线反演精度可达到5%,但热带大气在16~20 km高度的水汽廓线反演精度仅为10%。反演精度预估,仅提供了一种全面认识仪器性能的方法,精度的确定还有赖于真实探测数据的获取和反演方法。
  • 图  1  不同切点高度的温度权重函数

    Fig. 1  Weighting function of atmospheric temperature at different tangent heights

    图  2  CO2吸收线强度(I)线性图(a)和对数图(b)

    Fig. 2  Linear diagram(a) and logarithmic diagram(b) of CO2's line intensity(I)

    图  3  不同切点高度的水汽权重函数

    Fig. 3  Weighting function of water vapor at different tangent heights

    图  4  水汽吸收线强度(I′)线性图(a)和对数图(b)

    Fig. 4  Linear diagram(a) and logarithmic diagram(b) of water vapor's line intensity(I′)

    图  5  温度的信号自由度总和与熵减少量总和随光谱通道数变化

    Fig. 5  Degree of signal freedom and entropy reduction of atmospheric temperature change with spectral channel numbers

    图  6  6种大气温度廓线

    Fig. 6  Six atmospheric temperature profiles

    图  7  6种大气水汽混合比廓线

    Fig. 7  Six volume mixing ratio profiles of water vapor

    表  1  对应不同光谱通道数的大气温度和水汽在11.5 km和25.3 km切点高度信号自由度和熵减少量总和

    Table  1  The sum of degree of signal freedom and entropy reduction at tangent heights of 11.0 km and 25.3 km for atmospheric temperature and water vapor for different channel numbers

    光谱通道数温度(11.5 km)水汽(11.5 km)温度(25.3 km)水汽(25.3 km)
    信号自由度熵减少量信号自由度熵减少量信号自由度熵减少量信号自由度熵减少量
    52.19411.072.1794.892.26010.742.1164.23
    102.78911.532.7655.342.88711.232.7194.69
    203.40511.983.3405.773.51011.693.3535.16
    504.22112.584.0776.314.33012.294.2175.80
    1004.84013.034.6356.714.94912.744.8776.28
    2005.46013.485.2277.145.54913.185.5336.75
    3005.82513.745.5817.405.88213.425.9217.03
    4006.08513.935.8377.586.11113.586.1797.22
    5006.28814.086.0387.736.28813.716.3837.37
    下载: 导出CSV

    表  2  6种大气不同温度反演精度条件下可获得的光谱通道数

    Table  2  Available channel numbers under six different atmospheric temperature inversion accuracy conditions

    大气种类精度/K切点高度
    0.0 km4.6 km11.5 km16.1 km20.7 km25.3 km34.5 km
    0.4085534139880
    美国标准大气0.5382220346807940424219940
    0.68340387232215733531451988244
    0.4032865420001
    热带大气0.515017435364859198872
    0.614633661767314142369474582
    0.4043750528200
    中纬度夏季大气0.5601176232087525417311557
    0.62717366535057524171189571397
    0.4023081349843160
    中纬度冬季大气0.5200524629144878950223533
    0.695624321416853792450751349201
    0.4076969391000
    副北极夏季大气0.5193621870150348126112641
    0.65587393881146342792036731276
    0.40415510611679250
    副北极冬季大气0.543288531257101982225065
    0.684584755913159973470421407262
    下载: 导出CSV

    表  3  6种大气不同水汽混合比相对反演精度条件下可获得的光谱通道数

    Table  3  Available channel numbers under six different volume mixing ratio of water vapor inversion accuracy conditions

    大气种类精度/%切点高度
    0.0 km4.6 km11.5 km16.1 km20.7 km25.3 km34.5 km
    美国标准大气53211975188971548115526821403
    10178530326175791412412749121488797
    热带大气501848413144007851791
    10027393210394108695790579279
    中纬度夏季大气50197281220853569120812204
    1025289581997311114114331161510160
    中纬度冬季大气5494176795445245125792686887
    10290029436157021670014937124177803
    副北极夏季大气5422021265052042275932852235
    10550296611591415428155951347910273
    副北极冬季大气53873141745223251930922206918
    101372326523159561735115782123268048
    下载: 导出CSV
  • [1] 单楠, 何平, 吴蕾.风廓线雷达反演温度平流的应用.应用气象学报, 2016, 27(3):323-333. doi:  10.11898/1001-7313.20160307
    [2] 何平, 徐宝祥, 周秀骥, 等.地基GPS反演大气水汽总量的初步试验.应用气象学报, 2002, 13(2):179-183. doi:  10.3969/j.issn.1001-7313.2002.02.006
    [3] 漆成莉, 董超华, 张文建, 等.FY-3A气象卫星红外分光计温度廓线模拟反演试验.应用气象学报, 2005, 16(5):576-582. doi:  10.3969/j.issn.1001-7313.2005.05.003
    [4] 胡秀清, 黄意玢, 陆其峰, 等.利用FY-3A近红外资料反演水汽总量.应用气象学报, 2011, 22(1):46-56. doi:  10.3969/j.issn.1001-7313.2011.01.005
    [5] Lerner J A, Weisz E, Kirchengast G.Temperature and humidity retrieval from simulated Infrared Atmospheric Sounding Interferometer (IASI) measurements.J Geophys Res, 2002, 107(D14):4189-4199. doi:  10.1029/2001JD900254
    [6] Milz M, Clarmann T V, Fischer H, et al.Water vapor distributions measured with the Michelson Interferometer for Passive Atmospheric Sounding on board Envisat (MIPAS/Envisat).J Geophys Res, 2005, 110, D24307, DOI: 10.1029/2005JD005973.
    [7] Guan L, Huang A, Li J.A study on retrieving atmospheric profiles from EOS/AIRS observations.Acta Meteor Sinica, 2004, 19(1):112-119. http://d.wanfangdata.com.cn/Periodical/qxxb-e200501012
    [8] McNally A P, Watts P D, Smith J A, et al.The assimilation of AIRS radiance data at ECMWF.Quart J Roy Meteor Soc, 2006, 132:935-957. doi:  10.1256/qj.04.171
    [9] Le Marshall J, Jung J, Derber J, et al.Impact of atmospheric infrared sounder observations on weather forecasts.Eos, 2005, 86(11):109-116. http://d.old.wanfangdata.com.cn/Periodical/dqkxjz-e201810001
    [10] 董立新, 杨虎, 张鹏, 等.FY-3A陆表温度反演及高温天气过程动态监测.应用气象学报, 2012, 23(2):214-222. doi:  10.3969/j.issn.1001-7313.2012.02.010
    [11] Collard A D, McNally A P.The assimilation of Infrared Atmospheric Sounding Interferometer radiances at ECMWF.Quart J Roy Meteor Soc, 2009, 135:1044-1058. doi:  10.1002/qj.410
    [12] Wang P, Li J, Goldberg M D, et al.Assimilation of thermodynamic information from advanced infrared sounders under partially cloudy skies for regional NWP.J Geophys Res Atmos, 2015, 120(11):5469-5484. doi:  10.1002/2014JD022976
    [13] 张文建, 黎光清, 董超华.用卫星遥感资料反演气象参数的误差分析及数值试验.应用气象学报, 1992, 3(3):266-272. http://qikan.camscma.cn/jamsweb/article/id/19920346
    [14] 王倩, 杨忠东, 毕研盟.高光谱遥感仪器的光谱参数和信噪比需求.应用气象学报, 2014, 25(5):600-609. http://qikan.camscma.cn/jamsweb/article/id/20140509
    [15] Miloshevich L M, Voemel H, Whiteman D N, et al.Absolute accuracy of water vapor measurements from six operational radiosonde types launched during AWEX-G, and implications for AIRS validation.J Geophys Res, 2006, 111, D09S10, DOI: 10.1029/2005JD006083.
    [16] Divakarla M G, Barnet C D, Goldberg M D, et al.Validation of Atmospheric Infrared Sounder temperature and water vapor retrievals with matched radiosonde measurements and forecasts.J Geophys Res, 2006, 111, D09S15, DOI: 10.1029/2005JD006116.
    [17] Shephard M W, Worden H M, Cady-Pereira K E, et al.Tropospheric Emission Spectrometer nadir spectral radiance comparisons.J Geophys Res Atmos, 2008, 113, D15S05, DOI: 10.1029/2007JD008856.
    [18] Wetzel G, Oelhaf H, Berthet G, et al.Validation of MIPAS-ENVISAT H2O operational data collected between July 2002 and March 2004.Atmos Chem Phys, 2013, 213:5791-5811. https://ui.adsabs.harvard.edu/abs/2013ACP....13.5791W/abstract
    [19] Dudhia A.The Reference Forward Model (RFM).Journal of Quantitative Spectroscopy & Radiative Transfer, 2017, 186:243-253.
    [20] Rozanov V V, Buchwitz M, Eichmann K U, et al.Sciatran-A new radiative transfer model for geophysical applications in the 240-2400 nm spectral region:The pseudo-spherical version.Adv Space Res, 2002, 29(11):1831-1835. doi:  10.1016/S0273-1177(02)00095-9
    [21] Scott N A, Chedin A.A fast line-by-line method for atmospheric absorption computations:The Automatized Atmospheric Absorption Atlas.J Appl Meteor, 1981, 20:802-812. doi:  10.1175/1520-0450(1981)020<0802:AFLBLM>2.0.CO;2
    [22] Clough S A, Shephard M W, Mlawer E J, et al.Atmospheric radiative transfer modeling:A summary of the AER codes, short communication.Journal of Quantitative Spectroscopy & Radiative Transfer, 2005, 91:233-244. https://www.sciencedirect.com/science/article/pii/S0022407304002158
    [23] Gordon I E, Rothman L S, Hill C, et al.The HITRAN2016 Molecular Spectroscopic Database.Journal of Quantitative Spectroscopy & Radiative Transfer, 2017, 203:3-69. http://www.wanfangdata.com.cn/details/detail.do?_type=perio&id=38a1191c49dc7a929cd3dddf583a0050
    [24] 毕研盟, 杨忠东, 卢乃锰, 等.近红外CO2高光谱探测仪通道选择.应用气象学报, 2014, 25(2):143-149. doi:  10.3969/j.issn.1001-7313.2014.02.003
    [25] 黄意玢, 董超华.用940 nm通道遥感水汽总量的可行性试验.应用气象学报, 2002, 13(2):184-192. doi:  10.3969/j.issn.1001-7313.2002.02.007
    [26] Rodgers C D.Information content and optimization of high spectral resolution remote measurements.Adv Space Res, 1998, 21(3):361-367. doi:  10.1016/S0273-1177(97)00915-0
    [27] Crevoisier C, Chedin A, Scott N A.AIRS channel selection for CO2 and other trace-gas retrievals.Quart J Roy Meteor Soc, 2003, 129:2719-2740. doi:  10.1256/qj.02.180
    [28] Fourrie N, Thepaut J N.Evaluation of the AIRS near-real-time channel selection for application to numerical weather prediction.Quart J Roy Meteor Soc, 2003, 129:2425-2439. doi:  10.1256/qj.02.210
    [29] Dudhia A, Jay V L, Rodgers C D.Microwindow selection for high-spectral-resolution sounders.Appl Opt, 2002, 41:3665-3673. doi:  10.1364/AO.41.003665
    [30] Worden J, Kulawik S S, Shephard M W, et al.Predicted errors of tropospheric emission spectrometer nadir retrievals from spectral window selection.J Geophys Res, 2004, 109, D09308, DOI: 10.1029/2004JD004522.
    [31] Collard A D.Selection of IASI channels for use in numerical weather prediction.Quart J Roy Meteor Soc, 2007, 133:1977-1991. doi:  10.1002/qj.178
    [32] Rabier F, Fourrié N, Chafäi D, et al.Channel selection methods for infrared atmospheric sounding interferometer radiances.Quart J Roy Meteor Soc, 2002, 128:1011-1027. doi:  10.1256/0035900021643638
  • 加载中
图(7) / 表(3)
计量
  • 摘要浏览量:  2826
  • HTML全文浏览量:  2330
  • PDF下载量:  77
  • 被引次数: 0
出版历程
  • 收稿日期:  2020-02-10
  • 修回日期:  2020-03-31
  • 刊出日期:  2020-07-31

目录

    /

    返回文章
    返回