留言板

尊敬的读者、作者、审稿人, 关于本刊的投稿、审稿、编辑和出版的任何问题, 您可以本页添加留言。我们将尽快给您答复。谢谢您的支持!

姓名
邮箱
手机号码
标题
留言内容
验证码

CWRF模式极端降水模拟误差订正

董晓云 余锦华 梁信忠 王琛

董晓云, 余锦华, 梁信忠, 等. CWRF模式极端降水模拟误差订正. 应用气象学报, 2020, 31(4): 504-512. DOI: 10.11898/1001-7313.20200412..
引用本文: 董晓云, 余锦华, 梁信忠, 等. CWRF模式极端降水模拟误差订正. 应用气象学报, 2020, 31(4): 504-512. DOI: 10.11898/1001-7313.20200412.
Dong Xiaoyun, Yu Jinhua, Liang Xinzhong, et al. Bias correction of summer extreme precipitation simulated by CWRF model. J Appl Meteor Sci, 2020, 31(4): 504-512. DOI:  10.11898/1001-7313.20200412.
Citation: Dong Xiaoyun, Yu Jinhua, Liang Xinzhong, et al. Bias correction of summer extreme precipitation simulated by CWRF model. J Appl Meteor Sci, 2020, 31(4): 504-512. DOI:  10.11898/1001-7313.20200412.

CWRF模式极端降水模拟误差订正

DOI: 10.11898/1001-7313.20200412
资助项目: 

国家气候中心中国精细化区域气候预测系统研发项目 NCC2016013

南京大气科学联合研究中心北极阁开放研究基金 NJCAR2016ZD03

国家自然科学基金项目 41575083

国家重点研究发展计划“重大自然灾害监测预警与防范”重点专项 2018YFC1507704

详细信息
    通信作者:

    余锦华, jhyu@nuist.edu.cn

Bias Correction of Summer Extreme Precipitation Simulated by CWRF Model

  • 摘要: 基于1980—2015年6—8月CWRF模式(Climate-Weather Research and Forecasting model)14种方案的模拟结果和全国逐日降水观测资料,对比了Q-lin,Q-tri,RQ-lin,RQ-tri,SSP-lin和CDFt 6种误差订正方法对CWRF模式控制化方案(C1)模拟中国东部夏季日极端降水的订正效果,以CWRF模式14种方案日极端降水的模拟效果排名为基础,对比了模拟效果较好的4种方案集合、模拟较差的4种方案集合以及14种方案集合的订正效果,选出相对较好的订正方案进一步评估其成员集合后订正和成员分别订正后再集合的订正效果,结果表明:采用6种误差订正方法均可明显减少日极端降水模拟误差,其中RQ-lin方法订正效果最佳。CWRF模式对中国东部的极端降水指数均表现出较好的模拟能力,不同参数化集合方案得到14种方案成员先订正再集合与观测日极端降水平均值最为接近,研究结果对于改进模拟结果、提高其预测能力有重要应用价值。
  • 图  1  验证时期CWRF模式C1方案日极端降水平均值及经6种方法的订正值与观测值

    Fig. 1  Daily extreme precipitation from observation and simulation by CWRF control scheme(C1) with its revision under 6 methods in validation period

    图  2  CWRF模式14种方案下5种极端降水指数的泰勒评分

    Fig. 2  Taylor score for 5 simulated extreme indices of 14 parameterization schemes of CWRF Model

    图  3  CWRF模式14种方案下5种极端指数的M2指数

    Fig. 3  M2 for 5 simulated extreme indices of 14 parameterization schemes of CWRF Model

    图  4  RQ-lin方法订正后不同方案集合的日极端降水平均值和观测值(a)观测,(b)C1,(c)C1,C12,C13和C14的集合,(d)C3,C4,C6和C10的集合,(e)C1~C14的集合

    Fig. 4  Daily extreme precipitation mean for different parameterization schemes under RQ-lin revision and observation (a)observation, (b)C1, (c)sets of C1, C12, C13 and C14, (d)sets of C3, C4, C6 and C10, (e)sets of C1-C14

    图  5  14种方案成员分别订正后再集合的日极端降水平均值空间分布

    Fig. 5  Daily extreme precipitation mean of 14 parameterization schemes revised and regrouped

    表  1  CWRF模式参数化方案组合

    Table  1  Parameterization schemes of CWRF

    方案积云对流参数化微物理过程参数化
    C1ECP & UWGSFCGCE
    C2KFetaGSFCGCE
    C3BMJGSFCGCE
    C4GrellGSFCGCE
    C5NSASGSFCGCE
    C6DonnerGSFCGCE
    C7EmanuelGSFCGCE
    C8ECP & UWLin
    C9ECP & UWWSM6
    C10ECP & UWEtamp-new
    C11ECP & UWThompson
    C12ECP & UWThompson-aero
    C13ECP & UWMorrison
    C14ECP & UWMorrison-aerosol
    下载: 导出CSV

    表  2  极端降水指数

    Table  2  Extreme rainfall indices

    指数名称缩写定义单位
    降水强度SDII总降水量/有雨日数mm·d-1
    暴雨日数R50日降水量不低于50 mm的日数d
    第95百分位降水量P95日降水量在第95百分位的值mm
    强降水量R95P日降水量大于第95百分位值的总降水量mm
    极端降水贡献率R95T超过第95百分位降水量之和占总降水量的百分率%
    下载: 导出CSV

    表  3  验证时期CWRF模式C1方案模拟的日极端降水平均值经6种方法订正后与观测值的区域相关系数以及均方根误差

    Table  3  Regional correlation coefficient and root mean square error of daily extreme precipitation mean from observation to revision of CWRF control scheme(C1) under 6 methods in validation period

    订正方法相关系数均方根误差
    Q-lin0.8110.29
    Q-tri0.7811.64
    RQ-lin0.8210.03
    RQ-tri0.8010.75
    SSP-lin0.6718.76
    CDFt0.7315.77
    下载: 导出CSV

    表  4  14种方案模拟能力排名

    Table  4  Ranking of simulation capabilities of 14 parameterization schemes

    方案泰勒评分时间变率综合
    C1384
    C2845
    C3101312
    C4141113
    C51128
    C6131414
    C712710
    C8588
    C9485
    C1091111
    C11665
    C12643
    C13111
    C14222
    下载: 导出CSV
  • [1] 王静, 余锦华, 何俊琦.江淮地区极端降水特征及其变化趋势的研究.气候与环境研究, 2015, 20(1):80-88. http://d.wanfangdata.com.cn/Periodical/qhyhjyj201501009
    [2] 霍治国, 范雨娴, 杨建莹, 等.中国农业洪涝灾害研究进展.应用气象学报, 2017, 28(6):641-653. doi:  10.11898/1001-7313.20170601
    [3] 甘衍军, 徐晶, 赵平, 等.暴雨致洪预报系统及其评估.应用气象学报, 2017, 28(4):385-398. doi:  10.11898/1001-7313.20170401
    [4] 翟盘茂, 王萃萃, 李威.极端降水事件变化的观测研究.气候变化研究进展, 2007, 3(3):144-148. http://www.cnki.com.cn/Article/CJFDTotal-QHBH200703005.htm
    [5] 伍红雨, 邹燕, 刘尉.广东区域性暴雨过程的定量化评估及气候特征.应用气象学报, 2019, 30(2):233-244. doi:  10.11898/1001-7313.20190210
    [6] Liang X Z, Sun C, Zheng X, et al.CWRF performance at downscaling China climate characteristics.Climate Dyn, 2018, 12:1-26. doi:  10.1007/s00382-018-4257-5
    [7] 刘冠州, 梁信忠.新一代区域气候模式(CWRF)国内应用进展.地球科学进展, 2017, 32(7):781-787. http://www.cqvip.com/QK/94287X/201707/673221462.html
    [8] Liang X Z, Xu M, Yuan X, et al.Regional climate-weather research and forecasting model (CWRF).Bull Amer Meteor Soc, 2012, 93(9):1363-1387.
    [9] 董晓云, 余锦华, 梁信忠, 等.CWRF模式在中囯夏季极端降水模拟的误差订正.应用气象学报, 2019, 30(2):223-232. doi:  10.11898/1001-7313.20190209
    [10] Khain A, Lang S, Lynn B, et al.Microphysics, radiation and surface processes in the Goddard Cumulus Ensemble (GCE) model.Meteor Atmos Phy, 2003, 82(1):97-137. http://www.springerlink.com/index/44myc52xcmc3ajxv.pdf
    [11] Qiao F, Liang X Z.Effects of cumulus parameterization closures on simulations of summer precipitation over the United States coastal oceans.J Adv Model Earth Sys, 2016, 8(1/2):1-23. doi:  10.1002/jame.20206
    [12] Qiao F, Liang X Z.Effects of cumulus parameterization closures on simulations of summer precipitation over the continental United States.Climate Dyn, 2017, 49(1/2):225-247. doi:  10.1007/s00382-016-3323-0
    [13] Bretherton C S, Park S S.A new moist turbulence parameterization in the Community Atmosphere Model.J Climate, 2009, 22(12):3422-3448. doi:  10.1175/2008JCLI2556.1
    [14] Kain J S.The Kain-Fritsch convective parameterization:An update.J Appl Meteor, 2004, 43:170-181. doi:  10.1175/1520-0450(2004)043<0170:TKCPAU>2.0.CO;2
    [15] Janji c' I J.The step-mountain eta coordinate model:Further developments of the convection, viscous sublayer, and turbulence closure schemes.Mon Wea Rev, 1994, 122(5):927-945. doi:  10.1175/1520-0493(1994)122<0927:TSMECM>2.0.CO;2
    [16] Grell G A, Dévényi D.A generalized approach to parameterizing convection combining ensemble and data assimilation techniques.Geophys Res Lett, 2002, 29(6):587-590. http://www.researchgate.net/publication/239743738_A_generalized_approach_to_parameterizing_convection_combining_ensemble_and_data_assimilation
    [17] Han J, Pan H L.Revision of convection and vertical diffusion schemes in the NCEP Global Forecast System.Wea Forecasting, 2011, 26(4):520-533. doi:  10.1175/WAF-D-10-05038.1
    [18] Donner L J.A cumulus parameterization including mass fluxes, convective vertical velocities, and mesoscale effects:Thermodynamic and hydrological aspects in a general circulation model.J Climate, 2001, 14(16):3444-3463. doi:  10.1175/1520-0442(2001)014<3444:ACPIMF>2.0.CO;2
    [19] Emanuel K A, Ivkovirothman M.Development and evaluation of a convection scheme for use in climate models.J Atmos Sci, 1999, 56(11):1766-1782. doi:  10.1175/1520-0469(1999)056<1766:DAEOAC>2.0.CO;2
    [20] Lin Y L, Farley R D, Orville H D.Bulk parameterization of the snow field in a cloud model.J Appl Meteor, 1983, 22(6):1065-1092. doi:  10.1175/1520-0450(1983)022<1065:BPOTSF>2.0.CO;2
    [21] Hong S Y, Lim J O J.The WRF single-moment 6-class microphysics scheme (WSM6).J Korean Medi Sci, 2006, 42:129-151. http://www.researchgate.net/publication/284701586_The_WRF_single-moment_6-class_microphysics_scheme_WSM6
    [22] Thompson G, Rasmussen R M, Manning K, et al.Explicit forecasts of winter precipitation using an improved bulk microphysics scheme.Part Ⅰ:Description and sensitivity analysis.Mon Wea Rev, 2004, 136(12):5095-5115. http://www.researchgate.net/publication/249621721_Explicit_Forecasts_of_Winter_Precipitation_Using_an_Improved_Bulk_Microphysics_Scheme._Part_I_Description_and_Sensitivity_Analysis
    [23] Thompson G, Eidhammer T.A study of aerosol impacts on clouds and precipitation development in a large winter cyclone.J Atmos Sci, 2014, 71(10):3636-3658. doi:  10.1175/JAS-D-13-0305.1
    [24] Morrison H, Thompson G, Tatarskii V.Impact of cloud microphysics on the development of trailing stratiform precipitation in a simulated squall line:Comparison of one- and two-moment schemes.Mon Wea Rev, 2009, 137(3):991-1007. doi:  10.1175/2008MWR2556.1
    [25] Taylor K E.Summarizing multiple aspects of model performance in a single diagram.J Geophys Res, 2001, 106(D7):7183-7192. doi:  10.1029/2000JA002008
    [26] Chen W, Jiang Z, Li L.Probabilistic projections of climate change over China under the SRES A1B Scenario using 28 AOGCMs.J Climate, 2011, 24(17):4741-4756. doi:  10.1175/2011JCLI4102.1
    [27] 杭月荷.CMIP5多模式对中国极端降水的模拟评估及未来情景预估.南京: 南京信息工程大学, 2013.
    [28] 童尧, 高学杰, 韩振宇, 等.基于RegCM4模式的中国区域日尺度降水模拟误差订正.大气科学, 2017, 41(6):1156-1166. http://www.cnki.com.cn/Article/CJFDTOTAL-DQXK201706003.htm
    [29] 曾晓青, 薛峰, 姚莉, 等.针对模式风场的格点预报订正方案对比.应用气象学报, 2019, 30(1):51-62. doi:  10.11898/1001-7313.20190105
    [30] 郝民, 龚建东, 田伟红, 等.L波段探空仪湿度资料偏差订正及同化试验.应用气象学报, 2018, 29(5):49-60. doi:  10.11898/1001-7313.20180505
    [31] 卢新玉, 魏鸣, 王秀琴.TRMM月降水量产品在新疆地区的订正.应用气象学报, 2017, 28(3):379-384. doi:  10.11898/1001-7313.20170311
    [32] 朱连华.中国地区极端降水的统计建模及其未来概率预估.南京: 南京信息工程大学, 2017.
    [33] 郭玉娣, 刘彬贤, 梁冬坡.变分方法在渤海海域ASCAT风场订正中的应用.应用气象学报, 2019, 30(3):122-130. doi:  10.11898/1001-7313.20190310
    [34] 刘甲毅, 邓丽姣, 傅国斌, 等.两种统计降尺度方法在秦岭山地的适用性.应用气象学报, 2018, 29(6):99-109. doi:  10.11898/1001-7313.20180609
    [35] Michelangeli P A, Vrac M, Loukos H.Probabilistic downscaling approaches:Application to wind cumulative distribution functions.Geophys Res Lett, 2009, 36(11):163-182. http://www.researchgate.net/publication/238623680_Probabilistic_downscaling_approaches_Application_to_wind_cumulative_distribution_functions
  • 加载中
图(5) / 表(4)
计量
  • 摘要浏览量:  3224
  • HTML全文浏览量:  1402
  • PDF下载量:  91
  • 被引次数: 0
出版历程
  • 收稿日期:  2020-02-05
  • 修回日期:  2020-04-28
  • 刊出日期:  2020-07-31

目录

    /

    返回文章
    返回