Objective Precipitation Type Forecast Based on ECMWF Ensemble Prediction Product
-
摘要: 基于欧洲中期天气预报中心(European Centre for Medium-Range Weather Forecasts,ECMWF)集合预报系统的降水相态产品(precipitation type,PTYPE),分别以HSS评分最优、TS评分最优和频率偏差最优为标准,运用最优概率阈值法,生成雨、雨夹雪、雪和冻雨4类降水相态的确定性预报产品,并与ECMWF集合预报系统控制成员及细网格模式确定性预报进行对比。最优概率阈值显示:3种最优标准下,不同相态降水最优概率阈值不同,但冻雨和降雪最优概率阈值均最大,为40%~80%,雨夹雪最优概率阈值最小,约为10%,三者最优概率阈值均随预报时效延长而减小;降雨最优概率阈值为7%~25%,随预报时效延长而增大。对比检验结果显示:最优概率阈值法明显提高了降水相态预报能力,且以HSS评分最优时预报效果最佳;最优概率阈值法有效减小冻雨空报,同时显著改善降雨和降雪预报的频率偏差和TS评分,对雨夹雪预报改进效果有限。Abstract: Ensemble prediction system usually improves forecast skill compared to deterministic model under the same model system. The European Centre for Medium-Range Weather Forecasts (ECMWF) ensemble prediction system precipitation type product (PTYPE) is used with the approach of optimal probability threshold (OPT) to produce precipitation type deterministic forecast. The history dataset of winter half year (October to the next March) from 2016-2017 of ECMWF ensemble prediction system and observations of 2515 surface weather stations are used firstly to estimate optimal probability thresholds for different lead times of rain, sleet, snow and freezing rain under criteria of Optimal HSS (OHSS), optimal TS (OTS) and Optimal forecast bias (OB). Then deterministic precipitation type forecast is calculated from the probabilistic forecast of ensemble prediction system, verified by data of 2018 winter half year and compared with the precipitation type forecasts of ECMWF high-resolution deterministic model (HRD) and ensemble prediction system control forecast (CF). It indicates that optimal probability thresholds under three criteria are different. However, optimal thresholds of snow and freezing rain are the largest which are between 80% and 40%, and optimal thresholds of sleet are the smallest which are under 10%. They all decrease with elongating lead times. Optimal thresholds of rain are small which are between 7% and 25%, increasing with elongating lead times. Verification results show that performances of CF are the lowest with the proportion correct between 92% and 91% and HSS between 0.74 and 0.55. The performance of HRD is better than CF with the proportion correct about 93% and HSS between 0.77 and 0.65. OPT based on ensemble prediction system probabilistic forecast improves the forecast skill of precipitation type significantly. The improvement of OHSS is the most significant with the proportion correct about 94% and HSS from 0.81 to 0.68. From the verification of every kind of precipitation types and case analysis, it demonstrates that the performance of HRD and CF for sleet is similar. However, for the other three precipitation types, the performance of HRD is better than that of CF and the performance of OPT is the best. For freezing rain, the forecast bias of CF and HRD is larger than 2 which means too more false alarm. OPT reduces the forecast area and false alarm of freezing rain and improves the performance. HRD and CF forecast less rains and more snows with poor forecast biases. OPT corrects these errors and makes better forecast bias and TS scores for rain and snow. For sleet, the forecast bias of OPT is less than 1 significantly and the TS score is nearly zero which is worse than HRD and CF.
-
图 6 2018年12月7日20:00起报30 h时效ECMWF集合预报系统PTYPE概率预报(填色)和实况(离散点)对比
(a)雨,(b)雨夹雪,(c)雪,(d)冻雨
Fig. 6 ECMWF ensemble prediction system precipitation type probabilistic forecasts at lead time of 30 h from 2000 BT 7 Dec 2018(the shaded) and corresponding observations(the scattered)
(a)rain, (b)sleet, (c)snow, (d)freezing rain
表 1 雨、雨夹雪、雪和冻雨预报检验的4分类列联表
Table 1 The contingency table for four categories of rain, sleet, snow and freezing rain
项目 相态 观测 雨 雨夹雪 雪 冻雨 预报 雨 a e r g 雨夹雪 h b u v 雪 z l c m 冻雨 n s q d -
[1] 陈虹杏, 谌芸, 陆尔, 等.2008年初南方雨雪冰冻期间降水过程的温湿异常.应用气象学报, 2015, 26(5):525-535. doi: 10.11898/1001-7313.20150502 [2] Theriault J M, Stewart R E, Henson W.On the dependence of winter precipitation types on temperature, precipitation rate, and associated features.J Applied Meteor Climatol, 2010, 49:1429-1442. doi: 10.1175/2010JAMC2321.1 [3] 刘玉莲, 任国玉, 孙秀宝.降水相态分离单临界气温模型建立和检验.应用气象学报, 2018, 29(4):449-459. doi: 10.11898/1001-7313.20180406 [4] 李江波, 李根娥, 裴雨杰, 等.一次春季强寒潮的降水相态变化分析.气象, 2009, 35(7):87-95. http://www.wanfangdata.com.cn/details/detail.do?_type=perio&id=qx200907013 [5] Cortinas J V, Brill K F, Baldwin M E.Probabilistic Forecasts of Precipitation Type//Preprints, 16th Conf on Probability and Statistics in the Atmospheric Sciences.Amer Meteor Soc, 2002:140-145. https://www.researchgate.net/publication/266347591_PROBABILISTIC_FORECASTS_OF_PRECIPITATION_TYPE [6] Wandishin M S, Baldwin M E, Mullen S L, et al.Short-range ensemble forecasts of precipitation type.Wea Forecasting, 2005, 20:609-626. doi: 10.1175/WAF871.1 [7] 陆虹, 翟盘茂, 覃卫坚, 等.低温雨雪过程的粒子群-神经网络预报模型.应用气象学报, 2015, 26(5):513-524. doi: 10.11898/1001-7313.20150501 [8] Allen R, Erickson M.AVN-based MOS Precipitation Type Guidance for the United States.NWS Technical Procedures Bulletin, No.476, NOAA, 2001. [9] Allen R.MRF-based MOS Precipitation Type Guidance for the United States.NWS Technical Procedures Bulletin, No.485, 2001. [10] 董全, 黄小玉, 宗志平.人工神经网络法和线性回归法对降水相态的预报效果对比.气象, 2013, 39(3):324-332. http://www.wanfangdata.com.cn/details/detail.do?_type=perio&id=qx201303006 [11] Scheuerer M, Gregory S, Hamill T M, et al.Probabilistic precipitation-type forecasting based on GEFS ensemble forecasts of vertical temperature profiles.Mon Wea Rev, 2017, 145:1401-1412. doi: 10.1175/MWR-D-16-0321.1 [12] ECMWF.ECMWF IFS Documentation Cy43R1, Part Ⅳ: Physical Processes.2016: 118-120. [13] Forbes R, Tsonevsky I, Hewson T, et al.Towards predicting high-impact freezing rain events.ECMWF Newsletter, 2014, 141:15-21. http://www.researchgate.net/publication/296639554_Towards_predicting_high-impact_freezing_rain_events [14] Gascón E, Hewson T, Haiden T.Improving predictions of precipitation type at the surface:Description and verification of two new products from the ECMWF ensemble.Wea Forecasting, 2018, 33:89-108. doi: 10.1175/WAF-D-17-0114.1 [15] Leutbecher M, Palmer T N.Ensemble forecasting.J Comput Phys, 2008, 227:3515-3539. doi: 10.1016/j.jcp.2007.02.014 [16] Molteni F, Buizza R, Palmer T N, et al.The ECMWF ensemble prediction system:Methodology and validation.Quart J Roy Meteor Soc, 1996, 122:73-119. doi: 10.1002/qj.49712252905 [17] 赵华生, 黄小燕, 黄颖.ECMWF集合预报产品在广西暴雨预报中的释用.应用气象学报, 2018, 29(3):344-353. doi: 10.11898/1001-7313.20180308 [18] 潘留杰, 薛春芳, 张宏芳, 等.两个集合预报系统对秦岭及周边降水预报性能对比.应用气象学报, 2016, 27(6):676-687. doi: 10.11898/1001-7313.20160604 [19] 代刊, 朱跃建, 毕宝贵.集合模式定量降水预报的统计后处理技术研究综述.气象学报, 2018, 76(4):493-510. http://www.wanfangdata.com.cn/details/detail.do?_type=perio&id=qxxb201804001 [20] 毕宝贵, 代刊, 王毅, 等.定量降水预报技术进展.应用气象学报, 2016, 27(5):534-549. doi: 10.11898/1001-7313.20160503 [21] 李俊, 杜钧, 陈超君."频率匹配法"在集合降水预报中的应用研究.气象, 2015, 41(6):674-684. http://www.wanfangdata.com.cn/details/detail.do?_type=perio&id=qx201506002 [22] 吴启树, 韩美, 刘铭, 等.基于评分最优化的模式降水预报订正算法对比.应用气象学报, 2017, 28(3):306-317. doi: 10.11898/1001-7313.20170305 [23] 孙靖, 程光光, 张小玲.一种改进的数值预报降水偏差订正方法及应用.应用气象学报, 2015, 26(2):173-184. doi: 10.11898/1001-7313.20150205 [24] 乔利夫.预报检验: 大气科学从业者指南(第二版).李应林, 译.北京: 气象出版社, 2016. [25] Jollife I T, Stephenson D B.Forecast Verification:A Practitioner'S Guide in Atmospheric Science.John Wiley, 2003. [26] Goodfellow I, Bengio Y, Courville A.深度学习.赵申剑, 译.北京: 人民邮电出版社, 2017. [27] 董全, 金荣花, 代刊, 等.ECMWF集合预报和确定性预报对淮河流域暴雨预报的对比分析.气象, 2016, 42(9):1146-1153. http://www.wanfangdata.com.cn/details/detail.do?_type=perio&id=qx201609012 [28] 赵琳娜, 刘莹, 包红军, 等.基于重组降水集合预报的洪水概率预报.应用气象学报, 2017, 28(5):544-554. doi: 10.11898/1001-7313.20170503 [29] Johnson A, Wang X.Verification and calibration of neighborhood and object-based probabilistic precipitation forecasts from a multimodel convection-allowing ensemble.Mon Wea Rev, 2012, 140:3054-3077. doi: 10.1175/MWR-D-11-00356.1 [30] McGovern A, Lagerquist B, Gagne Ⅱ D J, et al.Making the black box more transparent:Understanding the physical implications of machine learning.Bull Amer Meteor Soc, 2019, 100:2175-2199. doi: 10.1175/BAMS-D-18-0195.1