留言板

尊敬的读者、作者、审稿人, 关于本刊的投稿、审稿、编辑和出版的任何问题, 您可以本页添加留言。我们将尽快给您答复。谢谢您的支持!

姓名
邮箱
手机号码
标题
留言内容
验证码

基于ECMWF集合预报产品的降水相态客观预报方法

董全 张峰 宗志平

董全, 张峰, 宗志平. 基于ECMWF集合预报产品的降水相态客观预报方法. 应用气象学报, 2020, 31(5): 527-542. DOI: 10.11898/1001-7313.20200502..
引用本文: 董全, 张峰, 宗志平. 基于ECMWF集合预报产品的降水相态客观预报方法. 应用气象学报, 2020, 31(5): 527-542. DOI: 10.11898/1001-7313.20200502.
Dong Quan, Zhang Feng, Zong Zhiping. Objective precipitation type forecast based on ECMWF ensemble prediction product. J Appl Meteor Sci, 2020, 31(5): 527-542. DOI:  10.11898/1001-7313.20200502.
Citation: Dong Quan, Zhang Feng, Zong Zhiping. Objective precipitation type forecast based on ECMWF ensemble prediction product. J Appl Meteor Sci, 2020, 31(5): 527-542. DOI:  10.11898/1001-7313.20200502.

基于ECMWF集合预报产品的降水相态客观预报方法

DOI: 10.11898/1001-7313.20200502
资助项目: 

国家重点研究发展计划“科技冬奥”专项 2018YFF0300104

国家科技支撑计划 2015BAC03B01

国家科技支撑计划 2015-BAC03B03

国家重点研究发展计划 2017YFC1502004

详细信息
    通信作者:

    董全, dongquan@cma.gov.cn

Objective Precipitation Type Forecast Based on ECMWF Ensemble Prediction Product

  • 摘要: 基于欧洲中期天气预报中心(European Centre for Medium-Range Weather Forecasts,ECMWF)集合预报系统的降水相态产品(precipitation type,PTYPE),分别以HSS评分最优、TS评分最优和频率偏差最优为标准,运用最优概率阈值法,生成雨、雨夹雪、雪和冻雨4类降水相态的确定性预报产品,并与ECMWF集合预报系统控制成员及细网格模式确定性预报进行对比。最优概率阈值显示:3种最优标准下,不同相态降水最优概率阈值不同,但冻雨和降雪最优概率阈值均最大,为40%~80%,雨夹雪最优概率阈值最小,约为10%,三者最优概率阈值均随预报时效延长而减小;降雨最优概率阈值为7%~25%,随预报时效延长而增大。对比检验结果显示:最优概率阈值法明显提高了降水相态预报能力,且以HSS评分最优时预报效果最佳;最优概率阈值法有效减小冻雨空报,同时显著改善降雨和降雪预报的频率偏差和TS评分,对雨夹雪预报改进效果有限。
  • 图  1  不同最优标准、不同相态、不同时效预报最优概率阈值

    (以OHSS为标准时无雨夹雪阈值)

    Fig. 1  Estimated optimal probability thresholds under criteria of OTS, OB, OHSS as a function of lead times for different initial times

    (no sleet threshold under criteria of OHSS)

    图  2  2018年冬半年全国降水相态、不同时效预报的HSS评分和正确率

    Fig. 2  HSS and proportion correct of precipitation type forecast at different lead times for 2018 winter half year

    图  3  2018年冬半年全国降水相态不同时效预报TS评分

    Fig. 3  TS scores of precipitation type forecast at different lead times for 2018 winter half year

    图  4  2018年冬半年全国降水相态不同时效预报频率偏差

    Fig. 4  Forecast bias of precipitation type at different lead times for 2018 winter half year

    图  5  2018年12月7日20:00起报30 h时效降水相态确定性预报(填色)与实况(离散点)对比

    (a)OPTH,(b)HRD,(c)CF

    Fig. 5  Precipitation type deterministic forecasts at lead time of 30 h from 2000 BT 7 Dec 2018(the shaded) and corresponding observations(the scattered)

    (a)OPTH, (b)HRD, (c)CF

    图  6  2018年12月7日20:00起报30 h时效ECMWF集合预报系统PTYPE概率预报(填色)和实况(离散点)对比

    (a)雨,(b)雨夹雪,(c)雪,(d)冻雨

    Fig. 6  ECMWF ensemble prediction system precipitation type probabilistic forecasts at lead time of 30 h from 2000 BT 7 Dec 2018(the shaded) and corresponding observations(the scattered)

    (a)rain, (b)sleet, (c)snow, (d)freezing rain

    图  7  2018年12月3日20:00起报126 h时效降水相态确定性预报(填色)与实况(离散点)对比

    (a)OPTH,(b)HRD,(c)CF

    Fig. 7  Precipitation type deterministic forecasts at lead time of 126 h from 2000 BT 3 Dec 2018(the shaded) and the corresponding observations(the scattered)

    (a)OPTH, (b)HRD, (c)CF

    图  8  2019年1月8日08:00起报24 h时效降水相态确定性预报(填色)与实况(离散点)对比

    (a)OPTH,(b)HRD,(c)CF

    Fig. 8  Precipitation type forecasts at lead time of 24 h from 0800 BT 8 Jan 2019(the shaded) and corresponding observations(the scattered)

    (a)OPTH, (b)HRD, (c)CF

    图  9  2019年1月4日08:00起报120 h时效降水相态确定性预报(填色)与实况(离散点)对比

    (a)OPTH,(b)HRD,(c)CF

    Fig. 9  Precipitation type forecasts at lead time of 120 h from 0800 BT 4 Jan 2019(the shaded) and corresponding observations(the scattered)

    (a)OPTH, (b)HRD, (c)CF

    表  1  雨、雨夹雪、雪和冻雨预报检验的4分类列联表

    Table  1  The contingency table for four categories of rain, sleet, snow and freezing rain

    项目 相态 观测
    雨夹雪 冻雨
    预报 a e r g
    雨夹雪 h b u v
    z l c m
    冻雨 n s q d
    下载: 导出CSV
  • [1] 陈虹杏, 谌芸, 陆尔, 等.2008年初南方雨雪冰冻期间降水过程的温湿异常.应用气象学报, 2015, 26(5):525-535. doi:  10.11898/1001-7313.20150502
    [2] Theriault J M, Stewart R E, Henson W.On the dependence of winter precipitation types on temperature, precipitation rate, and associated features.J Applied Meteor Climatol, 2010, 49:1429-1442. doi:  10.1175/2010JAMC2321.1
    [3] 刘玉莲, 任国玉, 孙秀宝.降水相态分离单临界气温模型建立和检验.应用气象学报, 2018, 29(4):449-459. doi:  10.11898/1001-7313.20180406
    [4] 李江波, 李根娥, 裴雨杰, 等.一次春季强寒潮的降水相态变化分析.气象, 2009, 35(7):87-95. http://www.wanfangdata.com.cn/details/detail.do?_type=perio&id=qx200907013
    [5] Cortinas J V, Brill K F, Baldwin M E.Probabilistic Forecasts of Precipitation Type//Preprints, 16th Conf on Probability and Statistics in the Atmospheric Sciences.Amer Meteor Soc, 2002:140-145. https://www.researchgate.net/publication/266347591_PROBABILISTIC_FORECASTS_OF_PRECIPITATION_TYPE
    [6] Wandishin M S, Baldwin M E, Mullen S L, et al.Short-range ensemble forecasts of precipitation type.Wea Forecasting, 2005, 20:609-626. doi:  10.1175/WAF871.1
    [7] 陆虹, 翟盘茂, 覃卫坚, 等.低温雨雪过程的粒子群-神经网络预报模型.应用气象学报, 2015, 26(5):513-524. doi:  10.11898/1001-7313.20150501
    [8] Allen R, Erickson M.AVN-based MOS Precipitation Type Guidance for the United States.NWS Technical Procedures Bulletin, No.476, NOAA, 2001.
    [9] Allen R.MRF-based MOS Precipitation Type Guidance for the United States.NWS Technical Procedures Bulletin, No.485, 2001.
    [10] 董全, 黄小玉, 宗志平.人工神经网络法和线性回归法对降水相态的预报效果对比.气象, 2013, 39(3):324-332. http://www.wanfangdata.com.cn/details/detail.do?_type=perio&id=qx201303006
    [11] Scheuerer M, Gregory S, Hamill T M, et al.Probabilistic precipitation-type forecasting based on GEFS ensemble forecasts of vertical temperature profiles.Mon Wea Rev, 2017, 145:1401-1412. doi:  10.1175/MWR-D-16-0321.1
    [12] ECMWF.ECMWF IFS Documentation Cy43R1, Part Ⅳ: Physical Processes.2016: 118-120.
    [13] Forbes R, Tsonevsky I, Hewson T, et al.Towards predicting high-impact freezing rain events.ECMWF Newsletter, 2014, 141:15-21. http://www.researchgate.net/publication/296639554_Towards_predicting_high-impact_freezing_rain_events
    [14] Gascón E, Hewson T, Haiden T.Improving predictions of precipitation type at the surface:Description and verification of two new products from the ECMWF ensemble.Wea Forecasting, 2018, 33:89-108. doi:  10.1175/WAF-D-17-0114.1
    [15] Leutbecher M, Palmer T N.Ensemble forecasting.J Comput Phys, 2008, 227:3515-3539. doi:  10.1016/j.jcp.2007.02.014
    [16] Molteni F, Buizza R, Palmer T N, et al.The ECMWF ensemble prediction system:Methodology and validation.Quart J Roy Meteor Soc, 1996, 122:73-119. doi:  10.1002/qj.49712252905
    [17] 赵华生, 黄小燕, 黄颖.ECMWF集合预报产品在广西暴雨预报中的释用.应用气象学报, 2018, 29(3):344-353. doi:  10.11898/1001-7313.20180308
    [18] 潘留杰, 薛春芳, 张宏芳, 等.两个集合预报系统对秦岭及周边降水预报性能对比.应用气象学报, 2016, 27(6):676-687. doi:  10.11898/1001-7313.20160604
    [19] 代刊, 朱跃建, 毕宝贵.集合模式定量降水预报的统计后处理技术研究综述.气象学报, 2018, 76(4):493-510. http://www.wanfangdata.com.cn/details/detail.do?_type=perio&id=qxxb201804001
    [20] 毕宝贵, 代刊, 王毅, 等.定量降水预报技术进展.应用气象学报, 2016, 27(5):534-549. doi:  10.11898/1001-7313.20160503
    [21] 李俊, 杜钧, 陈超君."频率匹配法"在集合降水预报中的应用研究.气象, 2015, 41(6):674-684. http://www.wanfangdata.com.cn/details/detail.do?_type=perio&id=qx201506002
    [22] 吴启树, 韩美, 刘铭, 等.基于评分最优化的模式降水预报订正算法对比.应用气象学报, 2017, 28(3):306-317. doi:  10.11898/1001-7313.20170305
    [23] 孙靖, 程光光, 张小玲.一种改进的数值预报降水偏差订正方法及应用.应用气象学报, 2015, 26(2):173-184. doi:  10.11898/1001-7313.20150205
    [24] 乔利夫.预报检验: 大气科学从业者指南(第二版).李应林, 译.北京: 气象出版社, 2016.
    [25] Jollife I T, Stephenson D B.Forecast Verification:A Practitioner'S Guide in Atmospheric Science.John Wiley, 2003.
    [26] Goodfellow I, Bengio Y, Courville A.深度学习.赵申剑, 译.北京: 人民邮电出版社, 2017.
    [27] 董全, 金荣花, 代刊, 等.ECMWF集合预报和确定性预报对淮河流域暴雨预报的对比分析.气象, 2016, 42(9):1146-1153. http://www.wanfangdata.com.cn/details/detail.do?_type=perio&id=qx201609012
    [28] 赵琳娜, 刘莹, 包红军, 等.基于重组降水集合预报的洪水概率预报.应用气象学报, 2017, 28(5):544-554. doi:  10.11898/1001-7313.20170503
    [29] Johnson A, Wang X.Verification and calibration of neighborhood and object-based probabilistic precipitation forecasts from a multimodel convection-allowing ensemble.Mon Wea Rev, 2012, 140:3054-3077. doi:  10.1175/MWR-D-11-00356.1
    [30] McGovern A, Lagerquist B, Gagne Ⅱ D J, et al.Making the black box more transparent:Understanding the physical implications of machine learning.Bull Amer Meteor Soc, 2019, 100:2175-2199. doi:  10.1175/BAMS-D-18-0195.1
  • 加载中
图(9) / 表(1)
计量
  • 摘要浏览量:  3570
  • HTML全文浏览量:  570
  • PDF下载量:  225
  • 被引次数: 0
出版历程
  • 收稿日期:  2020-06-01
  • 修回日期:  2020-07-30
  • 刊出日期:  2020-09-30

目录

    /

    返回文章
    返回