留言板

尊敬的读者、作者、审稿人, 关于本刊的投稿、审稿、编辑和出版的任何问题, 您可以本页添加留言。我们将尽快给您答复。谢谢您的支持!

姓名
邮箱
手机号码
标题
留言内容
验证码

物理滤波初始化四维变分在临近预报中的应用

姜文静 梁旭东

姜文静, 梁旭东. 物理滤波初始化四维变分在临近预报中的应用. 应用气象学报, 2020, 31(5): 543-555. DOI: 10.11898/1001-7313.20200503..
引用本文: 姜文静, 梁旭东. 物理滤波初始化四维变分在临近预报中的应用. 应用气象学报, 2020, 31(5): 543-555. DOI: 10.11898/1001-7313.20200503.
Jiang Wenjing, Liang Xudong. Application of PFI-4DVar data assimilation technique to nowcasting of numerical model. J Appl Meteor Sci, 2020, 31(5): 543-555. DOI:  10.11898/1001-7313.20200503.
Citation: Jiang Wenjing, Liang Xudong. Application of PFI-4DVar data assimilation technique to nowcasting of numerical model. J Appl Meteor Sci, 2020, 31(5): 543-555. DOI:  10.11898/1001-7313.20200503.

物理滤波初始化四维变分在临近预报中的应用

DOI: 10.11898/1001-7313.20200503
资助项目: 

国家重点研究发展计划 2017YFC1501800

详细信息
    通信作者:

    梁旭东, liangxd@cma.gov.cn

Application of PFI-4DVar Data Assimilation Technique to Nowcasting of Numerical Model

  • 摘要: 运用WRF模式(Weather Research and Forecasting Model,天气研究和预报模式)和WRFDA同化(WRF Data Assimilation,WRF资料同化)系统,探究采用物理滤波初始化四维变分同化方法提高数值预报在临近预报时效的预报能力的可能性。通过采用12 min同化窗,在不显著增加计算量的情况下,得到更协调的模式初始场,从而提高模式预报能力。选取2018年8月华北地区17个降水个例进行研究,结果表明:采用物理滤波初始化四维变分同化技术能够明显改进模式短时临近降水预报能力,明显提高对大量级降水预报的ETS评分,6 h累积降水大于25.0 mm量级的ETS评分由0.125提高到0.190,且6 h累积降水大于60.0 mm量级的ETS评分由0.016提高到0.081。研究还表明:同化雷达风场通过改进初始动力场使次网格尺度降水过程(积云参数化)快速响应,可提高短时临近时段的降水预报能力。
  • 图  1  2018年8月11日12:00—18:00 6 h累积降水实况

    Fig. 1  Observed six-hour accumulated precipitation during 1200-1800 UTC on 11 Aug 2018

    图  2  2018年8月11日观测与未同化(CTL)、同化(PFI)试验6 h累积降水预报

    Fig. 2  Six-hour accumulated precipitation in observation, CTL experiment(without data assimilation), and PFI experiment(with data assimilation) on 11 Aug 2018

    图  3  2018年8月11日12:00—13:00,13:00—14:00,14:00—15:00观测与未同化(CTL)、同化试验(PFI)的逐小时累积降水分布

    Fig. 3  One-hour accumulated precipitation in observation, CTL(control experiment without data assimilation) and PFI(data assimilation experiment) during 1200-1300 UTC, 1300-1400 UTC and 1400-1500 UTC on 11 Aug 2018

    图  4  2018年8月11日个例同化试验背景场和分析场相对湿度剖面

    Fig. 4  Section of relative humidity in background and analysis fields on 11 Aug 2018

    图  5  2018年8月11日850 hPa,700 hPa和500 hPa风场的背景场和分析场以及分析增量

    Fig. 5  Winds in the background, analysis fields and analysis increments at 850 hPa, 700 hPa and 500 hPa on 11 Aug 2018

    图  6  图 5,但是为散度场

    Fig. 6  The same as in Fig. 5, but for divergence

    图  7  2018年8月17个降水个例批量试验观测与未同化(CTL)、同化(PFI)试验的第1~3小时的逐小时平均累积降水中的积云对流降水(RAINC)和格点可分辨降水(RAINNC)分布

    Fig. 7  Averaged convective parameterization(RAINC) and averaged grid-resolvable(RAINNC) precipitation accumulated within one-hour from the 1st to the 3rd hour in observation, CTL(without data assimilation), and PFI experiment(with data assimilation) of seventeen cases in Aug 2018

    表  1  2018年8月华北地区17个降水个例

    Table  1  Seventeen selected precipitation cases in North China in Aug 2018

    日期 起始时刻 6 h最大降水量/mm 有降水产生的站点总数 6 h累积降水量不大于60 mm的站点数
    2018-08-03 00:00 116.6 3536 67
    2018-08-03 12:00 131.3 3837 37
    2018-08-07 00:00 66.4 3642 2
    2018-08-08 00:00 137.0 3825 65
    2018-08-09 00:00 61.5 2479 1
    2018-08-11 12:00 137.3 3522 71
    2018-08-12 12:00 166.8 6616 112
    2018-08-13 00:00 115.1 7608 22
    2018-08-13 12:00 191.5 6624 268
    2018-08-14 00:00 172.0 4614 194
    2018-08-14 12:00 255.7 2572 67
    2018-08-16 00:00 97.0 5095 12
    2018-08-17 12:00 231.3 7707 219
    2018-08-18 00:00 258.0 7528 315
    2018-08-19 00:00 283.8 6946 174
    2018-08-19 12:00 161.0 6097 177
    2018-08-30 00:00 108.5 4473 14
    下载: 导出CSV

    表  2  2018年8月17个降水个例批量试验的逐小时累积降水ETS评分

    Table  2  ETS scores of one-hour accumulated precipitation forecasts of seventeen cases in Aug 2018

    预报时间 试验 ETS评分
    0.1 mm 1.5 mm 7.0 mm 13.0 mm 40.0 mm
    第1小时 CTL 0.204 0.087 0.008 0 0
    3DV 0.203 0.081 0.007 0 0
    PFI 0.183 0.136 0.073 0.027 0
    第2小时 CTL 0.240 0.215 0.085 0.007 0
    3DV 0.242 0.201 0.082 0.009 0
    PFI 0.210 0.211 0.133 0.076 0.010
    第3小时 CTL 0.216 0.195 0.056 0.004 0
    3DV 0.221 0.188 0.069 0.009 0
    PFI 0.206 0.215 0.131 0.039 0.010
    下载: 导出CSV

    表  3  2018年8月17个降水个例批量试验的6 h累积降水ETS评分

    Table  3  ETS scores of six-hour accumulated precipitation forecasts of seventeen cases in Aug 2018

    试验 ETS评分
    0.1 mm 4.0 mm 13.0 mm 25.0 mm 60.0 mm
    CTL 0.202 0.245 0.187 0.125 0.016
    3DV 0.202 0.222 0.163 0.108 0.017
    PFI 0.181 0.241 0.210 0.190 0.081
    下载: 导出CSV

    表  4  2018年8月11日个例1~3 h逐小时累积降水预报ETS评分

    Table  4  ETS scores of one-hour accumulated precipitation forecasts from the 1st to the 3rd hour on 11 Aug 2018

    预报时间 ETS评分
    0.1 mm 1.5 mm 7.0 mm
    CTL PFI CTL PFI CTL PFI
    第1小时 -0.025 0.049 -0.004 0.008 0.0 0.0
    第2小时 -0.024 0.024 -0.038 0.015 -0.015 0.014
    第3小时 0.002 0.089 -0.024 0.053 -0.014 0.042
    下载: 导出CSV
  • [1] Ligda M G.Horizontal Motion of Small Precipitation Areas as Observed by 443 Radar.Tech Rep 21, Department of Meteorology, MIT, 1953:60.
    [2] Kessler E.Computer program for calculating average lengths of weather radar echoes and pattern bandedness.J Atmos Sci, 1966, 23:569-574. doi:  10.1175/1520-0469(1966)023<0569:CPFCAL>2.0.CO;2
    [3] Barclay P A, Wilk K E.Severe thunderstorm radar echo motion and related weather events hazardous to aviation operations.Essa Tech Mem, 1970, 46:63. http://cn.bing.com/academic/profile?id=2f05b99ce7d381c9cf690160563e76ae&encoded=0&v=paper_preview&mkt=zh-cn
    [4] 陈明轩, 俞小鼎, 谭晓光, 等.对流天气临近预报技术的发展与研究进展.应用气象学报, 2004, 15(6):754-766. http://qikan.camscma.cn/article/id/20040693
    [5] Rinehart R E, Garvey E T.Three-dimensional storm motion detection by conventional weather radar.Nature, 1978, 273:287-289. doi:  10.1038/273287a0
    [6] Rinehart R E.A pattern recognition technique for use with conventional weather radar to determine internal storm motions.J Atmos Technol, 1981, 13:119-134.
    [7] 王改利, 刘黎平, 阮征.多普勒雷达资料在暴雨临近预报中的应用.应用气象学报, 2007, 18(3):388-395;417. http://qikan.camscma.cn/article/id/20070363
    [8] 陈明轩, 王迎春, 俞小鼎.交叉相关外推算法的改进及其在对流临近预报中的应用.应用气象学报, 2007, 18(5):690-701. http://qikan.camscma.cn/article/id/200705105
    [9] Browning K A, Collier C G.An integrated radar-satellite nowcasting system in the UK//Nowcasting.New York: Academic Press, 1982: 47-61.
    [10] 王丽荣, 卞韬, 苏运涛, 等.晴空回波在强对流天气临近预报中的应用.应用气象学报, 2010, 21(5):606-613. http://qikan.camscma.cn/article/id/20100510
    [11] Dixon M, Wiener G.TITTAN:Thunderstorm identification, tracking, analysis and nowcasting-A radar-based methodology.J Atmos Oceanic Technol, 1993, 10:785-797. doi:  10.1175/1520-0426(1993)010<0785:TTITAA>2.0.CO;2
    [12] Wilson J W, Crook N A, MuellerC K, et al.Nowcasting thunderstorms:A status report.Bull Amer Meteor Soc, 1998, 79:2079-2100. doi:  10.1175/1520-0477(1998)079<2079:NTASR>2.0.CO;2
    [13] Wolfson M M, Forman G E, HallowellR G, et al.Consolidated Storm Prediction for Aviation (CoSPA)//13th Conference on Aviation, Range and Aerospace Meteorology.New Orleans, LA, Amer Meteor Soc, 2008: 58-62.
    [14] Benjamin S G, Hu M, Weygandt S, et al.Rapid Updating NWP: Integrated Assimilation of Radar/Sat/METAR Cloud Data for Initial Hydrometer/Divergence to Improve Hourly Updated Short-range Forecasts from RUC/RR/HRRR.WMO Symposium on Nowcasting, Whistler, Canada, 2009.
    [15] Benjamin S G, Weygandt S S, Brown J M.A North American hourly assimilation and model forecast cycle-The rapid refresh.Mon Wea Rev, 2016, 144:1669-1694. doi:  10.1175/MWR-D-15-0242.1
    [16] 俞小鼎, 王秀明, 李万莉, 等.雷暴与强对流临近预报.北京:气象出版社, 2020.
    [17] 冯佳宁, 端义宏, 徐晶, 等.雷达资料同化对2015年台风彩虹数值模拟改进.应用气象学报, 2017, 28(4):399-413. doi:  10.11898/1001-7313.20170402
    [18] 余贞寿, 冀春晓, 杨程, 等.同化风廓线雷达资料对浙江降水预报改进评估.应用气象学报, 2018, 29(1):97-110. doi:  10.11898/1001-7313.20180109
    [19] Abhilash S, Sahai A K, Mohankumar K, et al.Assimilation of doppler weather radar radial velocity and reflectivity observations in WRF-3DVAR system for short-range forecasting of convective storms.Pure & Applied Geophysics, 2012, 169(11):2047-2070. http://www.wanfangdata.com.cn/details/detail.do?_type=perio&id=1036ae8d0a7accd7bd52091eac2cf33e
    [20] Takano I, Segami A.Assimilation and initialization of a mesoscale model for improved spin-up of precipitation.Analytical Chemistry, 2011, 83(3):5145-5152. http://cn.bing.com/academic/profile?id=4fbd2a8b99a7d2f2b3a0cb66c94e3e1c&encoded=0&v=paper_preview&mkt=zh-cn
    [21] Lynch P, Huang X Y.Initialization of the HIRLAM model using a digital filter.Mon Wea Rev, 1992, 120:1019-1034. doi:  10.1175/1520-0493(1992)120<1019:IOTHMU>2.0.CO;2
    [22] Polavarapu S, Tanguay M, Fillion L.Four-dimensional variational data assimilation with digital filter initialization.Mon Wea Rev, 2000, 128:2491-2510. doi:  10.1175/1520-0493(2000)128<2491:FDVDAW>2.0.CO;2
    [23] Wee T K, Kuo Y H.Impact of a digital filter as a weak constraint in MM54DVAR:An observing system simulation experiment.Mon Wea Rev, 2004, 132:543-559. doi:  10.1175/1520-0493(2004)132<0543:IOADFA>2.0.CO;2
    [24] Sun J, Crook N A.Real-time low-level wind and temperature analysis using single WSR-88D data.Wea Forecasting, 2001, 16:117-132. doi:  10.1175/1520-0434(2001)016<0117:RTLLWA>2.0.CO;2
    [25] Kleist D T, Parrish D F, Derber J C, et al.Improving incremental balance in the GSI 3DVAR analysis system.Mon Wea Rev, 2009, 137:1046-1060. doi:  10.1175/2008MWR2623.1
    [26] Vendrasco E P, Sun J, Herdies D L, et al.Constraining a 3DVAR radar data assimilation system with large-scale analysis to improve short-range precipitation forecasts.J Climate Appl Meteor, 2016, 55:673-690. doi:  10.1175/JAMC-D-15-0010.1
    [27] Liang X, Wang B, Chan J C L, et al.Tropical cyclone forecasting with model-constrained 3D-Var Ⅰ:Description.Quart J Roy Meteor Soc, 2007, 133:147-153. doi:  10.1002/qj.9
    [28] 黄伟, 梁旭东.台风涡旋循环初始化方法及其在GRAPES-TCM中的应用.气象学报, 2010, 68(3):365-375. http://www.wanfangdata.com.cn/details/detail.do?_type=perio&id=qxxb201003008
    [29] Peng W, Liang X D, Zhang X, et al.Application of physical filter initialization in 4DVar.Mon Wea Rev, 2017, 145:2201-2216. doi:  10.1175/MWR-D-16-0274.1
    [30] Sun J, Wang H, Tong W, et al.Comparison of the impacts of momentum control variables on high-resolution variational data assimilation and precipitation forecasting.Mon Wea Rev, 2016, 144:149-169. doi:  10.1175/MWR-D-14-00205.1
    [31] Parrish D F, Derber J C.The National Meteorological Center's spectral statistical-interpolation analysis system.Mon Wea Rev, 1992, 120:1747-1763. doi:  10.1175/1520-0493(1992)120<1747:TNMCSS>2.0.CO;2
    [32] 王曼, 李华宏, 段旭, 等.WRF模式三维变分中背景误差协方差估计.应用气象学报, 2011, 22(4):482-492. http://qikan.camscma.cn/article/id/20110411
    [33] Liang X D, Xie Y X, Yin J F, et al.An IVAP based dealiasing method for radar velocity data quality control.J Atmos Oceanic Technol, 2019, 36:2069-2085. doi:  10.1175/JTECH-D-18-0216.1
    [34] Donner L J.An initialization for cumulus convection in numerical weather prediction models.Mon Wea Rev, 1988, 116(2):377-385. doi:  10.1175/1520-0493(1988)116<0377:AIFCCI>2.0.CO;2
  • 加载中
图(7) / 表(4)
计量
  • 摘要浏览量:  2159
  • HTML全文浏览量:  907
  • PDF下载量:  129
  • 被引次数: 0
出版历程
  • 收稿日期:  2020-06-16
  • 修回日期:  2020-07-30
  • 刊出日期:  2020-09-30

目录

    /

    返回文章
    返回