留言板

尊敬的读者、作者、审稿人, 关于本刊的投稿、审稿、编辑和出版的任何问题, 您可以本页添加留言。我们将尽快给您答复。谢谢您的支持!

姓名
邮箱
手机号码
标题
留言内容
验证码

北京MST雷达功率谱密度处理算法改进

陈泽 田玉芳 吕达仁

陈泽, 田玉芳, 吕达仁. 北京MST雷达功率谱密度处理算法改进. 应用气象学报, 2020, 31(6): 694-705. DOI: 10.11898/1001-7313.20200605..
引用本文: 陈泽, 田玉芳, 吕达仁. 北京MST雷达功率谱密度处理算法改进. 应用气象学报, 2020, 31(6): 694-705. DOI: 10.11898/1001-7313.20200605.
Chen Ze, Tian Yufang, Lü Daren. Improving the processing algorithm of Beijing MST radar power spectral density data. J Appl Meteor Sci, 2020, 31(6): 694-705. DOI:  10.11898/1001-7313.20200605.
Citation: Chen Ze, Tian Yufang, Lü Daren. Improving the processing algorithm of Beijing MST radar power spectral density data. J Appl Meteor Sci, 2020, 31(6): 694-705. DOI:  10.11898/1001-7313.20200605.

北京MST雷达功率谱密度处理算法改进

DOI: 10.11898/1001-7313.20200605
资助项目: 

国家自然科学基金项目 41905042

电波环境特性及模化技术重点实验室基金 6142403180204

临近空间探测实验与科学研究 XDA17010103

中国科学院前沿科学重点研究项目 QYZDY-SSW-DQC027

详细信息
    通信作者:

    田玉芳, tianyufang@mail.iap.ac.cn

Improving the Processing Algorithm of Beijing MST Radar Power Spectral Density Data

  • 摘要: 北京MST(mesosphere-stratosphere-troposphere,中间层-平流层-对流层)雷达是我国“子午工程”一期中探测大气动力结构的独特大型设备。雷达自2011年建成以来,已获取较好的大气风场数据,但在其他要素提取方面仍有改进需求。从噪声电平估算与目标回波识别这两个关键步骤改进雷达原始功率谱密度处理算法,以期得到更准确的大气要素信息。在噪声电平估算方面,提出应用对数-线性拟合方案快速实现客观分析法,与二分法方案差值的标准差为0.43 dB,表明对数-线性拟合方案能兼顾时效性与准确性。改进后的数据处理算法能够精确识别目标回波。利用改进算法处理2012年1—12月数据结果与雷达、探空以及ERA5再分析数据进行比较,各高度纬向风与探空测值的均方根误差均为2~3 m·s-1,优于雷达产品和探空测值均方根误差(3~4 m·s-1),信噪比、谱宽和垂直速度质量也有明显提高,表明改进算法可靠、有效且相对易于实现。
  • 图  1  2012年1月4日00:10北京MST雷达原始功率谱密度及数据预处理叠加经客观分析法和八段平均法处理的噪声电平(15 km高度东波束)

    Fig. 1  Beijing MST radar raw and preprocessed power spectral density and averaged noise value estimated by objective method and segment method at 0010 UTC 4 Jan 2012(eastern beam at height of 15 km)

    图  2  2012年3月16日15:10北京MST雷达观测数据的R2及lgR2随dP变化

    Fig. 2  R2 and lgR2 varying with dP using Beijing MST radar at 1510 UTC 16 Mar 2012

    图  3  2012年5月北京MST雷达7.8~12 km高度内(1715个距离库)功率谱数据应用对数-线性拟合方案与二分法方案估算噪声电平对比

    Fig. 3  The comparison of noise level estimated by log-linear scheme and dichotomy scheme using power spectral density at 7.8-12 km height of Beijing MST radar in May 2012

    图  4  2012年1月4日00:10北京MST雷达东波束与西波束经改进算法处理后5个距离库高度功率谱密度(加粗曲线表示识别出的目标回波信号)

    Fig. 4  Power spectral density of eastern and western beams at 5 heights of Beijing MST radar data processed by improved algorithm at 0010 UTC 4 Jan 2012(bold curve denotes recognized target echo)

    图  5  2012年3月16日11:40北京MST雷达原算法与改进算法得到的水平风速、水平风向与探空(11:15)对比

    Fig. 5  Comparison of the horizontal wind speed and wind direction between radiosonde(1115 UTC) and Beijing MST radar products before and after improved algorithm processed(1140 UTC) on 16 Mar 2012

    图  6  2012年1月1日—12月31日信噪比(a)和谱宽(b)的年平均值(曲线)和标准差(阴影)廓线

    Fig. 6  Comparison of annual mean(the curve) and standard deviation(the shaded) of SNR(a) and spectral width(b) between Beijing MST radar data(from 1 Jan to 31 Dec in 2012) obtained using original and improved algorithms

    图  7  2012年1月1日—12月31日北京MST雷达原算法与改进算法得到的经向风、纬向风与探空对比

    Fig. 7  Comparison of the zonal and meridional wind between radiosonde and Beijing MST radar data obtained using original and improved algorithms from 1 Jan to 31 Dec in 2012

    图  8  2012年1月1日—12月31日北京MST雷达原算法与改进算法得到的垂直速度与ERA5再分析数据对比

    Fig. 8  Comparison of the vertical velocity between ERA5 reanalysis and Beijing MST radar data obtained using original and improved algorithms from 1 Jan to 31 Dec in 2012

    图  9  2012年16组降水天气条件下北京MST雷达原算法与改进算法得到的经向风、纬向风与探空测值平均差值和均方根误差廓线

    Fig. 9  Comparison of mean values and root mean square error of zonal and meridional wind between radiosonde and Beijing MST radar data obtained using original and improved algorithms under 16-group precipitation weather conditions in 2012

  • [1] Capon J.High-resolution frequency-wavenumber spectrum analysis.Proceedings of the IEEE, 1969, 57(8):1408-1418. doi:  10.1109/PROC.1969.7278
    [2] Takao K, Fujita M, Nishi T.Adaptive antenna-array under directional constraint.IEEE Trans Antennas Propag, 1976, 24(5):662-669. doi:  10.1109/TAP.1976.1141411
    [3] Hudson J E.Adaptive Array Principles.Stevenage, UK, 1981.
    [4] Cox H, Zeskind R M, Owen M M.Robust adaptive beamforming.IEEE Transactions on Acoustics Speech and Signal Processing, 1987, 35(10):1365-1376. doi:  10.1109/TASSP.1987.1165054
    [5] Kamio K, Sato T.An adaptive sidelobe cancellation algorithm for high-gain antenna arrays.Electronics and Communications in Japan Part I-Communications, 2004, 87(3):11-18. doi:  10.1002/ecja.10178
    [6] Nishimura K, Nakamura T, Sato T, et al.Adaptive beamforming technique for accurate vertical wind measurements with multichannel MST radar.J Atmos Oceanic Technol, 2012, 29(12):1769-1775. doi:  10.1175/JTECH-D-11-00211.1
    [7] Curtis C D, Yeary M, Lake J L.Adaptive nullforming to mitigate ground clutter on the national weather radar testbed phased array radar.IEEE Transa Geosci Remote Sens, 2016, 54(3):1282-1291. doi:  10.1109/TGRS.2015.2477300
    [8] Hashimoto T, Nishimura K, Tsutsumi M, et al.A user parameter-free diagonal-loading scheme for clutter rejection on radar wind profilers.J Atmos Oceanic Technol, 2017, 34(5):1139-1153. doi:  10.1175/JTECH-D-16-0058.1
    [9] 钟刘军, 阮征, 葛润生, 等.风廓线雷达回波信号强度定标方法.应用气象学报, 2010, 21(5):598-605. http://qikan.camscma.cn/article/id/20100509
    [10] 王莎, 阮征, 葛润生.风廓线雷达探测大气返回信号谱的仿真模拟.应用气象学报, 2012, 23(1):20-29. http://qikan.camscma.cn/article/id/20120103
    [11] Blackman R B, Tukey J W.The measurement of power spectra from the point of view of communications engineering.1.Bell System Technical Journal, 1958, 37(1):185-282. doi:  10.1002/j.1538-7305.1958.tb03874.x
    [12] Blackman R B, Tukey J W.The measurement of power spectra from the point of view of communications engineering.2.Bell System Technical Journal, 1958, 37(2):485-569. doi:  10.1002/j.1538-7305.1958.tb01530.x
    [13] Passarelli R E, Romanik P, Geotis S G, et al.Ground Clutter Rejection in the Frequency Domain//20th Conf on Radar Meteorology, 1981: 295-300.
    [14] Sato T, Woodman R F.Spectral parameter-estimation of cat radar echoes in the presence of fading clutter.Radio Sci, 1982, 17(4):817-826. doi:  10.1029/RS017i004p00817
    [15] Donoho D L, Johnstone J M.Ideal spatial adaptation by wavelet shrinkage.Biometrika, 1994, 81(3):425-455. doi:  10.1093/biomet/81.3.425
    [16] Burg J P.Maximum entropy spectral analysis.Journal of China Institute of Communications, 1982, 17(4):1519-1533. http://sepwww.stanford.edu/data/media/public/docs/sep134/jim2/paper.pdf
    [17] Clothiaux E E, Penc R S, Thomson D W, et al.A first-guess feature-based algorithm for estimating wind speed in clear-air Doppler radar spectra.J Atmos Oceanic Technol, 1994, 11(4):888-908. doi:  10.1175/1520-0426(1994)011<0888:AFGFBA>2.0.CO;2
    [18] Morse C S.The NIMA method for improved moment estimation from Doppler spectra.J Atmos Oceanic Technol, 2002, 19(3):274-295. doi:  10.1175/1520-0426-19.3.274
    [19] 朱斌, 高仲辉.风廓线雷达探测系统中的谱数据处理.现代雷达, 2003, 25(11):24-26;30. http://www.wanfangdata.com.cn/details/detail.do?_type=perio&id=xdld200311007
    [20] 胡明宝.风廓线雷达数据处理与应用研究.南京: 南京信息工程大学, 2012.
    [21] 胡明宝, 李妙英, 贺宏兵.用综合识别法检测风廓线雷达湍流目标.系统工程与电子技术, 2012, 34(5):903-908. http://www.wanfangdata.com.cn/details/detail.do?_type=perio&id=xtgcydzjs201205009
    [22] Griesser T, Richner H.Multiple peak processing algorithm for identification of atmospheric signals in Doppler radar wind profiler spectra.Meteorologische Zeitschrif, 1998, 7(6):292-302. doi:  10.1127/metz/7/1998/292
    [23] 吴蕾.风廓线雷达探测性能分析及谱矩参数应用研究.北京: 中国科学院大气物理研究所, 2011.
    [24] 周旭辉.风廓线雷达功率谱密度数据处理算法研究.南京: 南京信息工程大学, 2011.
    [25] 周旭辉, 马杰良, 吴蕾, 等.基于正交多项式拟合的风廓线雷达风谱识别.现代雷达, 2011, 33(11):27-31. http://www.wanfangdata.com.cn/details/detail.do?_type=perio&id=xdld201111007
    [26] 惠建新, 吴蕾, 高玉春, 等.基于极大似然算法的风廓线雷达谱矩估计.气象科技, 2012, 40(1):11-16. http://www.wanfangdata.com.cn/details/detail.do?_type=perio&id=qxkj201201003
    [27] 林晓萌, 何平, 黄兴友.一种抑制降水对风廓线雷达水平风干扰的方法.应用气象学报, 2015, 26(1):66-75. doi:  10.11898/1001-7313.20150107
    [28] 陈浩君, 黄兴友, 孙婧, 等.基于径向功率谱的风廓线雷达错误风数据处理.应用气象学报, 2015, 26(4):460-471. doi:  10.11898/1001-7313.20150408
    [29] 张福贵, 范潇, 何建新.自适应阈值方法去除风廓线雷达地物杂波.应用气象学报, 2015, 26(4):472-481. doi:  10.11898/1001-7313.20150409
    [30] 高祝宇, 阮征, 魏鸣, 等.风廓线雷达数据质量影响因子及处理算法.应用气象学报, 2016, 27(2):148-159. doi:  10.11898/1001-7313.20160203
    [31] Hildebrand P H, Sekhon R S.Objective determination of the noise level in Doppler spectra.J Appl Meteorol, 1974, 13(7):808-811. doi:  10.1175/1520-0450(1974)013<0808:ODOTNL>2.0.CO;2
    [32] Petitdidier M, Sy A, Garrouste A, et al.Statistical characteristics of the noise power spectral density in UHF and VHF wind profilers.Radio Sci, 1997, 32(3):1229-1247. doi:  10.1029/97RS00250
    [33] Sekhon R S, Srivastava R C.Doppler radar observations of drop-size distributions in a thunderstorm.J Atmos Sci, 1971, 28(6):983-994. doi:  10.1175/1520-0469(1971)028<0983:DROODS>2.0.CO;2
    [34] 何平, 李柏, 吴蕾, 等.确定风廓线雷达功率谱噪声功率方法.应用气象学报, 2013, 24(3):297-303. http://qikan.camscma.cn/article/id/20130305
    [35] Tian Y F, Lu D R.Comparison of Beijing MST radar and radiosonde horizontal wind measurements.Adv Atmos Sci, 2017, 34(1):39-53. doi:  10.1007/s00376-016-6129-4
    [36] 田玉芳, 吕达仁.北京MST雷达探测中间层-低热层观测结果初步分析.地球物理学报, 2016, 59(2):440-452. http://www.wanfangdata.com.cn/details/detail.do?_type=perio&id=dqwlxb201602004
    [37] Sinha S, Regeena M, Sarma T, et al.Spectral feature-based classification of wind profiler power spectra.IEEE Trans Geosci Remote Sens, 2018, 56(4):2138-2146. doi:  10.1109/TGRS.2017.2775654
    [38] 阮征, 葛润生, 吴志根.风廓线仪探测降水云体结构方法的研究.应用气象学报, 2002, 13(3):330-338. http://qikan.camscma.cn/article/id/20020343
    [39] 何平, 朱小燕, 阮征, 等.风廓线雷达探测降水过程的初步研究.应用气象学报, 2009, 20(4):465-470. http://qikan.camscma.cn/article/id/200904011
    [40] Rao D N, Rao T N, Venkataratnam M, et al.Diurnal and seasonal variability of turbulence parameters observed with Indian mesosphere-stratosphere-troposphere radar.Radio Sci, 2001, 36(6):1439-1457. doi:  10.1029/2000RS002316
    [41] Murphy D J, Hocking W K, Fritts D C.An assessment of the effect of gravity waves on the width of radar Doppler spectra.J Atmos Terr Phys, 1994, 56(1):17-29. doi:  10.1016/0021-9169(94)90172-4
    [42] Yamamoto M, Sato T, May P T, et al.Estimation error parameters of mesosphere-stratosphere-troposphere radars obtained by least squares fitting method and its lower bound.Radio Sci, 1988, 23(6):1013-1021. doi:  10.1029/RS023i006p01013
    [43] Wilson R, Luce H, Hashiguchi H, et al.Energetics of persistent turbulent layers underneath mid-level clouds estimated from concurrent radar and radiosonde data.J Atmos Sol-Terr Phys, 2014, 118(1):78-89. http://www.wanfangdata.com.cn/details/detail.do?_type=perio&id=eaa9d4e06de6eda1324851514eef316f
    [44] Woodman R F.Spectral moment estimation in MST radars.Radio Sci, 1985, 20(6):1185-1195. doi:  10.1029/RS020i006p01185
    [45] 何平.相控阵风廓线雷达.北京:气象出版社, 2006.
  • 加载中
图(9)
计量
  • 摘要浏览量:  1096
  • HTML全文浏览量:  249
  • PDF下载量:  80
  • 被引次数: 0
出版历程
  • 收稿日期:  2020-04-17
  • 修回日期:  2020-08-10
  • 刊出日期:  2020-10-27

目录

    /

    返回文章
    返回