Effects of Improving Evapotranspiration Parameterization Scheme on WOFOST Model Performance in Simulating Maize Drought Stress Process
-
摘要: 分别利用优化蒸散计算(PM方案)、作物系数(CC方案)和二者同时优化(PMCC方案)改进WOFOST模型,基于降水适宜年(2012年)和干旱年(2015年和2018年)在辽宁省锦州开展的玉米分期(4月20日、4月30日和5月10日)播种试验资料评价模型改进效果。结果表明:2012年,PM方案可增大潜在蒸散,CC方案在作物系数小(大)于1时使潜在蒸散减小(增大);3个方案对叶面积指数、地上生物量和土壤湿度模拟几乎不产生影响。2015年,PM方案的拔节后叶面积指数、地上生物量、产量和土壤湿度较原模型明显减小,蒸腾速率在喇叭口期之前增大,之后减小;CC方案在喇叭口期之前蒸腾速率小于原模型,之后大于原模型,其他4个变量略大于原模型。PMCC方案的各变量模拟值介于PM方案和CC方案之间,3个播期模拟精度叶面积指数分别提高6%,21%和3%,地上生物量分别提高8%,8%和14%,产量分别提高66%,63%和66%。2018年,PMCC方案前两播期地上生物量模拟精度分别提高5%和1%,产量模拟精度分别提高32%和5%。PMCC方案可改善模型在干旱条件下的模型性能。Abstract: To solve the problem on poor performance of crop growth model in simulating crop growth process under water stress, three schemes including improving evapotranspiration parameterization scheme with Penman-Monteith method, building dynamic crop coefficient (Kc) and considering simultaneously two above-mentioned solutions which are respectively named as the PM, CC and PMCC schemes are used to improve WOFOST model. Their effects on model performance in simulating maize drought stress process are evaluated based on experiments of different sowing dates on 20 April, 30 April and 10 May conducted in Jinzhou in the year with normal precipitation (2012) and the dry year (2015 and 2018). The results show that compared with the default model, PM scheme plays a role in increasing potential evapotranspiration and transpiration rate in 2012, while CC scheme decreases (increases) transpiration rate as Kc is larger (smaller) than the model default value 1, respectively. Three schemes hardly affect simulation accuracies of soil moisture in rooted zone, total above ground production, leaf area index (ILA) and yield. In 2015, PM scheme makes ILA, total above ground production yield and soil moisture dramatically smaller than those with the default model after the jointing stage of maize. It also increases (decreases) transpiration rate before (after) the whorl stage of maize. After improving the model with CC scheme, ILA, total above ground production, yield and soil moisture are slightly larger than those simulated by the default model after the whorl stage, and the simulated transpiration rates are smaller (larger) than those simulated by the default model before (after) the whorl stage of maize. Nevertheless, the above-mentioned variables simulated by the improved model with PMCC scheme range between those simulated by the model with PM and CC schemes, and ILA, total above ground production and yield are obviously closer to the observations. Specifically, the mean increments of simulation accuracies for all growth periods in three sowing dates are 6%, 21% and 3% for ILA and 8%, 8% and 14% for total above ground production, respectively. The simulation accuracies of yield for three sowing dates increase by 66%, 63% and 66%, respectively. In 2018, the simulation accuracies of total above ground production and yield for the sowing dates on 20 April and 30 April are obviously improved by PMCC scheme, and increase by 5%, 1% in total above ground production as well as 32%, 5% in yield. Therefore, the model performance with PMCC scheme in simulating maize growth is significantly improved under water stress.
-
表 1 不同播期各生育期出现日期及日序
Table 1 Occurrence dates and days of year in maize growth periods for different sowing date experiments
年份 生育期 04-20播种 04-30播种 05-10播种 日期 日序 日期 日序 日期 日序 2012 三叶 05-12 132 05-15 135 05-23 143 七叶 05-25 145 05-29 149 06-02 153 拔节 06-12 163 06-15 166 06-19 170 抽雄 07-07 188 07-10 191 07-16 197 乳熟 08-14 226 08-20 232 08-24 236 成熟 09-18 261 09-23 266 09-25 268 2015 三叶 05-03 123 05-15 135 05-23 143 七叶 05-24 144 05-28 148 06-03 154 拔节 06-09 160 06-14 165 06-16 167 抽雄 07-11 192 07-14 195 07-17 198 乳熟 08-17 229 08-24 236 08-25 237 成熟 09-17 260 09-24 267 09-26 269 2018 三叶 05-05 125 05-12 132 05-22 142 七叶 05-18 138 05-24 144 06-05 156 拔节 06-11 162 06-12 163 06-17 168 抽雄 07-11 192 07-13 194 07-15 196 乳熟 08-17 229 08-20 232 08-23 235 成熟 09-22 265 09-25 268 09-29 272 表 2 2014年不同播期玉米果穗各部分干重及籽粒占比
Table 2 Dry weights of different components of maize ear and ratios of kernel to ear in 2014
播期 穗轴重/g 籽粒重/g 果穗重/g 籽粒果穗比 04-20 36.2 224.9 261.1 0.861 04-30 34.7 197.0 231.8 0.850 05-10 35.4 209.7 245.1 0.856 平均 35.5 210.6 246.0 0.856 -
[1] Lobell D B, Roberts M J, Schlenker W, et al.Greater sensitivity to drought accompanies maize yield increase in the US Midwest.Science, 2014, 344: 516-519. doi: 10.1126/science.1251423 [2] Myers S S, Smith M R, Guth S, et al.Climate change and global food systems:Potential impacts on food security and undernutrition.Annu Rev Publ Health, 2017, 38: 259-277. doi: 10.1146/annurev-publhealth-031816-044356 [3] 王培娟, 马玉平, 霍治国, 等.土壤水分对冬小麦叶片光合速率影响模型构建.应用气象学报, 2020, 31(3): 267-279. doi: 10.11898/1001-7313.20200302Wang P J, Ma Y P, Huo Z G, et al.Construction of the model for soil moisture effects on leaf photosynthesis rate of winter wheat.J Appl Meteor Sci, 2020, 31(3): 267-279. doi: 10.11898/1001-7313.20200302 [4] 史舟, 梁宗正, 杨媛媛, 等.农业遥感研究现状与展望.农业机械学报, 2015, 46(2): 247-260.Shi Z, Liang Z Z, Yang Y Y, et al.Status and prospect of agricultural remote sensing.Transactions of the Chinese Society of Agricultural Machinery, 2015, 46(2): 247-260. [5] Li Y B, Song H, Zhou L, et al.Tracking chlorophyll fluorescence as an indicator of drought and rewatering across the entire leaf lifespan in a maize field.Agr Water Manage, 2019, 211: 190-201. doi: 10.1016/j.agwat.2018.09.050 [6] 郭建平.农业气象灾害监测预测技术研究进展.应用气象学报, 2016, 27(5): 620-630. doi: 10.11898/1001-7313.20160510Guo J P.Research progression agricultural meteorological disaster monitoring and forecasting.J Appl Meteor Sci, 2016, 27(5): 620-630. doi: 10.11898/1001-7313.20160510 [7] FAO.Faostat (2019-03-03)[2020-08-10].http://www.fao.org/faostat/en/#data. [8] 宋艳玲, 王建林, 田靳峰, 等.气象干旱指数在东北春玉米干旱监测中的改进.应用气象学报, 2019, 30(1): 25-34. doi: 10.11898/1001-7313.20190103Song Y L, Wang J L, Tian J F, et al.The spring maize drought index in northeast China based on meteorological drought index.J Appl Meteor Sci, 2019, 30(1): 25-34. doi: 10.11898/1001-7313.20190103 [9] Cheng Z Q, Meng J H, Wang Y M.Improving spring maize yield estimation at field scale by assimilating time-series hj-1 CCD data into the WOFOST model using a new method with fast algorithms.Remote Sens, 2016, 8(4): 303. doi: 10.3390/rs8040303 [10] 赵锦, 杨晓光, 刘志娟, 等.全球气候变暖对中国种植制度的可能影响.X:气候变化对东北三省春玉米气候适宜性的影响.中国农业科学, 2014, 47(16): 3143-3156. doi: 10.3864/j.issn.0578-1752.2014.16.003Zhao J, Yang X G, Liu Z J, et al.The possible effects of global warming on cropping systems in China.X:The possible impacts of climate change on climatic suitability of spring maize in the three provinces of Northeast China.Sciencia Agricultura Sinica, 2014, 47(16): 3143-3156. doi: 10.3864/j.issn.0578-1752.2014.16.003 [11] 米娜, 蔡福, 张玉书, 等.不同生育期持续干旱对玉米的影响及其与减产率的定量关系.应用生态学报, 2017, 28(5): 1563-1570.Mi N, Cai F, Zhang Y S, et al.Effect of continuous drought during different growth stages on maize and its quantitative relationship with yield loss.Chinese Journal of Applied Ecology, 2017, 28(5): 1563-1570. [12] 蔡福, 明惠青, 谢艳兵, 等.东北地区春玉米关键生育期干旱对根系生长的影响.气象与环境学报, 2018, 34(2): 75-81. doi: 10.3969/j.issn.1673-503X.2018.02.010Cai F, Ming H Q, Xie Y B, et al.Effect of drought stress on root growth during the key growth periods of spring maize in Northeast China.Journal of Meteorology and Environment, 2018, 34(2): 75-81. doi: 10.3969/j.issn.1673-503X.2018.02.010 [13] 蔡福, 米娜, 纪瑞鹏, 等.关键发育期干旱及复水过程对春玉米主要生理参数的影响.应用生态学报, 2017, 28(11): 3643-3652.Cai F, Mi N, Ji R P, et al.Effects of drought stress and subsequent rewatering on major physiological parameters of spring maize during the key growth periods.Chinese Journal of Applied Ecology, 2017, 28(11): 3643-3652. [14] Song H, Li Y B, Zhou L, et al.Maize leaf functional responses to drought episode and rewatering.Agr Forest Meteorol, 2018, 249: 57-70. doi: 10.1016/j.agrformet.2017.11.023 [15] 郝卫平.干旱复水对玉米水分利用效率及补偿效应影响研究.北京:中国农业科学院, 2013.Hao W P.Influence of Water Stress and Rewatering on Maize WUE and Compensation Effects.Beijing:Chinese Academy of Agricultural Sciences, 2013. [16] Ahuja I, De Vos R C, Bones A M, et al.Plant molecular stress responses face climate change.Trends Plant Sci, 2010, 15(12): 664-674. doi: 10.1016/j.tplants.2010.08.002 [17] Xu Z Z, Zhou G S, Shimizu H.Plant responses to drought and rewatering.Plant Signal Behav, 2010, 5(6): 649-654. doi: 10.4161/psb.5.6.11398 [18] 马玉平, 霍治国, 王培娟, 等.中国农业气象模式(CAMM1.0)构建与应用.应用气象学报, 2019, 30(5): 528-542. doi: 10.11898/1001-7313.20190502Ma Y P, Huo Z G, Wang P J, et al.The construction and application of Chinese agrometeorological model (CAMM1.0).J Appl Meteor Sci, 2019, 30(5): 528-542. doi: 10.11898/1001-7313.20190502 [19] 侯英雨, 张营, 吴门新, 等.国家级现代农业气象业务技术进展.应用气象学报, 2018, 29(6): 641-656. doi: 10.11898/1001-7313.20180601Hou Y Y, Zhang Y, Wu M X, et al.Advances of modern agrometeorological service and technology in China.J Appl Meteor Sci, 2018, 29(6): 641-656. doi: 10.11898/1001-7313.20180601 [20] 陈思宁, 赵艳霞, 申双和, 等.基于PyWOFOST作物模型的东北玉米估产及精度评估.中国农业科学, 2013, 46(14): 2880-2893. doi: 10.3864/j.issn.0578-1752.2013.14.004Chen S N, Zhao Y X, Shen S H, et al.Study on maize yield estimation and accuracy assessment based on PyWOFOST crop model in Northeast China.Sciencia Agricultura Sinica, 2013, 46(14): 2880-2893. doi: 10.3864/j.issn.0578-1752.2013.14.004 [21] 孙琳丽, 马玉平, 景元书, 等.基于约束性分析的数据与作物模型同化方法.应用气象学报, 2013, 24(3): 287-296. doi: 10.3969/j.issn.1001-7313.2013.03.004Sun L L, Ma Y P, Jing Y S, et al.Assimilation of observations with crop growth model based on the constrained analysis of parameters.J Appl Meteor Sci, 2013, 24(3): 287-296. doi: 10.3969/j.issn.1001-7313.2013.03.004 [22] 刘维, 侯英雨, 吴门新, 等.WOFOST模型在东北春玉米产区的验证与适应性评价.气象与环境科学, 2017, 40(3): 7-13.Liu W, Hou Y Y, Wu M X, et al.Validation and adaptability evaluation of WOFOST model in spring maize area of northeast.Meteorological and Environmental Sciences, 2017, 40(3): 7-13. [23] Hijmans R J, Guiking Lens I M, Van Diepen C A.User Guide for the WOFOST 6.0, Crop Growth Simulation Model.Technical Document 12//DLO Winand Staing Centre, Wageningen, 1994. [24] Jones J W, Keating B A, Porter C H.Approaches to modular model development.Agr Syst, 2001, 70: 421-443. doi: 10.1016/S0308-521X(01)00054-3 [25] Jones J W, Hoogenboom G, Porter C H, et al.The DSSAT cropping system model.Eur J Agron, 2003, 18: 235-265. doi: 10.1016/S1161-0301(02)00107-7 [26] Keating B A, Carberry P S, Hammer G L, et al.An overview of APSIM, a model designed for farming systems simulation.Eur J Agron, 2003, 18(3-4): 267-288. doi: 10.1016/S1161-0301(02)00108-9 [27] 张建平, 何永坤, 王靖, 等.不同发育期干旱对玉米籽粒形成与产量的影响模拟.中国农业气象, 2015, 36(1): 43-49. doi: 10.3969/j.issn.1000-6362.2015.01.006Zhang J P, He Y K, Wang J, et al.Impact simulation of drought at different growth stages on grain formation and yield of maize.Chinese Journal of Agrometeorology, 2015, 36(1): 43-49. doi: 10.3969/j.issn.1000-6362.2015.01.006 [28] 方缘.基于作物生长模型的玉米干旱损失评估.沈阳:沈阳农业大学, 2015.Fang Y.Evaluation of Maize Drought Loss Based on Crop Growth Model.Shenyang:Shenyang Agriculture University, 2015. [29] 曹阳, 杨婕, 熊伟, 等.1961-2010年潜在干旱对我国夏玉米产量影响的模拟分析.生态学报, 2014, 34(2): 421-429.Cao Y, Yang J, Xiong W, et al.Simulation of summer maize yield influenced by potential drought in China during 1961-2010.Acta Ecologica Sinica, 2014, 34(2): 421-429. [30] 米娜, 张玉书, 蔡福, 等.土壤干旱胁迫对作物影响的模拟研究进展.生态学杂志, 2016, 35(9): 2519-2526.Mi N, Zhang Y S, Cai F, et al.Progress in the simulation of drought stress effect on crop production.Chinese Journal of Ecology, 2016, 35(9): 2519-2526. [31] DeJonge K C, Ascough Ⅱ J C, Andales A A, et al.Improving evapotranspiration simulations in the CERES-Maize model under limited irrigation.Agr Water Manage, 2012, 115: 92-103. doi: 10.1016/j.agwat.2012.08.013 [32] 蔡福, 米娜, 纪瑞鹏, 等.基于锦州春玉米田间试验的WOFOST模型参数的确定及性能评价.生态学杂志, 2019, 38(4): 1238-1248.Cai F, Mi N, Ji R P, et al.Determination of crop parameters for WOFOST model and its performance evaluation based on field experiment of spring maize in Jinzhou, Liaoning.Chinese Journal of Ecology, 2019, 38(4): 1238-1248. [33] Schneider C L, Attinger S, Delfs J O, et al.Implementing small scale processes at the soil-plant interface:The role of root architectures for calculating root water uptake profiles.Hydrol Earth Syst Sci, 2010, 14: 279-289. doi: 10.5194/hess-14-279-2010 [34] 王宇, 周广胜.雨养玉米农田生态系统的蒸散特征及其作物系数.应用生态学报, 2010, 21(3): 647-653.Wang Y, Zhou G S.Evapotranspiration characteristics and crop coefficient of rain-fed maize agroecosystem.Chinese Journal of Applied Ecology, 2010, 21(3): 647-653. [35] 秦鹏程, 刘敏, 万素琴, 等.不完整气象资料下基于作物模型的产量预报方法.应用气象学报, 2016, 27(4): 407-416. doi: 10.11898/1001-7313.20160403Qin P C, Liu M, Wan S Q, et al.Methods for yield forecast based on crop model with incomplete weather observations.J Appl Meteor Sci, 2016, 27(4): 407-416. doi: 10.11898/1001-7313.20160403 [36] 孙琳丽, 侯琼, 马玉平, 等.WOFOST模型在内蒙古河套灌区模拟玉米生长全程的适应性.生态学杂志, 2016, 35(3): 800-807. https://www.cnki.com.cn/Article/CJFDTOTAL-STXZ201603032.htmSun L L, Hou Q, Ma Y P, et al.Adaptability of WOFOST model to simulate the whole growth period of maize in Hetao irrigation region of Inner Mongolia.Chinese Journal of Ecology, 2016, 35(3): 800-807. https://www.cnki.com.cn/Article/CJFDTOTAL-STXZ201603032.htm [37] 范志宣.气候变化背景下基于作物模型的吉林省玉米潜在产量模拟.沈阳:沈阳农业大学, 2016.Fang Z X.Simulation of Potential Maize Yield in Jilin Province Based on Crop Model under Climate Change.Shenyang:Shenyang Agriculture University, 2016. [38] 李秀芬, 马树庆, 宫丽娟.基于WOFOST的东北地区玉米生育期气象条件适宜度评价.中国农业气象, 2013, 34(1): 43-49. doi: 10.3969/j.issn.1000-6362.2013.01.007Li X F, Ma S Q, Gong L J.Evaluation of meteorological suitability degree during maize growth period based on WOFOST in northeast China.Chinese Journal of Agrometeorology, 2013, 34(1): 43-49. doi: 10.3969/j.issn.1000-6362.2013.01.007 [39] Monteith J L.Evaporation and surface temperature.Quart J Roy Meteorol Soc, 1981, 107: 1-27. doi: 10.1002/qj.49710745102 [40] 张淑杰, 周广胜, 李荣平.基于涡度相关的春玉米逐日作物系数及蒸散模拟.应用气象学报, 2015, 26(6): 695-704. doi: 10.11898/1001-7313.20150606Zhang S J, Zhou G S, Li R P.Daily crop coefficient of spring maize using eddy covariance observation and its actual evapotranspiration simulation.J Appl Meteor Sci, 2015, 26(6): 695-704. doi: 10.11898/1001-7313.20150606 [41] Ben-Asher J, Garcia A G Y, Hoogenboom G.Effect of high temperature on photosynthesis and transpiration of sweet coin (Zea mays L.var.rugose).Photo synthetic, 2008, 46(4): 595-603. [42] 吴玮, 景元书, 马玉平, 等.干旱环境下夏玉米各生育时期光响应特征.应用气象学报, 2013, 24(6): 723-730. doi: 10.3969/j.issn.1001-7313.2013.06.009Wu W, Jing Y S, Ma Y P, et al.Light response characteristics of summer maize at different growth stages under drought.J Appl Meteor Sci, 2013, 24(6): 723-730. doi: 10.3969/j.issn.1001-7313.2013.06.009 [43] Jiang P, Cai F, Zhao Z Q, et al.Physiological and dry matter characteristics of spring maize in northeast China under drought stress.Water, 2018, 10(11): 1561. doi: 10.3390/w10111561 [44] Yang J C, Zhang J H.Grain filling of cereals under soil drying.New Phytol, 2006, 169: 223-236. doi: 10.1111/j.1469-8137.2005.01597.x