Application of QVP Method to Winter Precipitation Observation Based on Polarimetric Radar
-
摘要: 双偏振雷达是研究降水微物理过程的重要探测设备,为研究我国东部沿海地区冬季降水的微物理特性,选取2019—2020年不同天气背景下(包含相态转换)影响上海的冬季降水过程,基于上海南汇WSR-88D双偏振雷达资料,采用准垂直廓线(QVP)方法反演3次降水过程的反射率因子ZH、差分反射率ZDR和相关系数ρhv的高度-时间廓线。基于QVP,结合探空、再分析资料、地面自动气象站和雨滴谱数据,分析过程时段内融化层高度变化、云中粒子微物理特征,同时借助云雷达观测比对QVP方法的实际效果。结果表明:QVP方法反演的廓线可以体现贝吉龙过程的发生以及融化层高度的变化,并能够有效区分过程时段内的凇附和聚合过程。与此同时,对于非连续性或非均匀性质的降水系统,有针对性地选择方位利用QVP方法进行处理可准确获取重点关注区域降水云系中的微物理过程变化。综上所述,QVP方法反演的高度-时间廓线能够用于降水相态的快速诊断及降水粒子从空中到地面演变的微物理过程分析,为冬季降水相态短时临近预报提供依据。Abstract: Winter precipitation events, especially those involving transitions of precipitation type, continue to pose a formidable forecasting and nowcasting challenge to operational meteorologists. The polarimetric radars provide unique insight into microphysical processes in clouds and precipitation. Using polarimetric radars in conjunction with thermodynamic information is a promising way for better winter precipitation detection. To explore the microphysical characteristic and the internal structure of winter precipitation over eastern coast of China, the data collected by the WSR-88D polarimetric radar at Nanhui, Shanghai are exploited by the quasi-vertical profile (QVP) method. The QVP method involves azimuthal averaging of radar reflectivity factor at horizontal polarization(ZH), differential reflectivity(ZDR) and the copular correlation coefficient (ρhv) at high antenna elevation, presenting QVPs in a height-time format. QVP generation is an efficient way to examine the temporal evolution of microphysical processes governing precipitation production and to display physical links between polarimetric signatures aloft in the ice-phase or mixed-phase parts of the clouds. In 3 different synoptic system governing snow cases affecting Shanghai, the QVPs retrieved from dual-polarization radars at elevations of 19.5ånd 9.9åre demonstrated to successfully monitor the evolution of melting layer and Bergeron process. They also provide opportunities to discriminate between the processes of snow aggregation and riming with the joint analysis of reanalysis data and observations of radio sounding, auto weather station, disdrometer and wind profiler radar. The vertical observation by cloud radar data is used to compare with QVP retrieved profile. Additionally, for discontinuous or multi-scale synoptic precipitation, a selected azimuthal averaging QVP technique is introduced to separate QVPs into before and after the synoptic system for detailed comparisons and monitoring microphysical processes leading to precipitation formation. The method is demonstrated to monitor important microphysical signatures as well as following precipitation development. In conclusion, the procedure for generating quasi-vertical profiles of polarimetric radar variables is very simple and straightforward, and the QVP plots in the height-time format can be produced in real time for operational polarimetric weather radars as a standard product, which is very easy to implement and very promising to use along with traditional weather radar products of PPIs and reconstructed RHIs. The QVP methodology is particularly effective because of its local coverage and high precision as well as its potential for nowcasting.
-
表 1 2019年2月8日关键层降水粒子偏振量和相态时间变化表
Table 1 Polarimetric parameters and hydrometeor classification at key levels on 8 Feb 2019
仰角 高度 03:00 05:30 ZH/dBZ ZDR/dB ρhv 相态 ZH/dBZ ZDR/dB ρhv 相态 19.5° 2.5 km 26.5 0.5 0.96 球形小冰晶(凇附) 7.6 0.06 0.92 冰水混合(聚合状冰晶和小水滴) 5.5 km 5.8 0.97 0.94 冰晶 1.4 1.25 0.94 冰晶(枝状) 9.9° 2.5 km 31.7 0.48 0.93 球形小冰晶(凇附) 12.1 -0.13 0.93 冰水混合(聚合状冰晶和小水滴) 5.1 km 10.9 0.56 0.98 冰晶 6.2 0.95 0.97 冰晶(枝状) 表 2 2019年2月9日关键层降水粒子偏振量和相态时间变化表
Table 2 Polarimetric parameters and hydrometeor classification at key levels on 9 Feb 2019
仰角 高度 22:30 00:00 ZH/dBZ ZDR/dB ρhv 相态 ZH/dBZ ZDR/dB ρhv 相态 19.5° 2.5 km 33.6 0.85 0.93 冰水混合 20.0 -0.03 0.975 小水滴 5.5 km 16.8 0.39 0.94 冰晶(柱状) 2.2 16.7 0.91 冰晶(枝状) 9.9° 2.5 km 33.7 0.63 0.93 冰水混合 21.6 0.04 0.92 冰水混合(含小霰粒) 5.1 km 13.0 0.74 0.98 冰晶(柱状) 5.1 1.18 0.97 冰晶(枝状) 表 3 2020年2月15日01:30 9.9°仰角关键层降水粒子偏振量和相态时间变化表
Table 3 Polarimetric parameters and hydrometeor classification at key levels at 9.9° elevation at 0130 BT 15 Feb 2020c
高度 系统后部 系统前部 ZH/dBZ ZDR/dB ρhv 相态 ZH/dBZ ZDR/dB ρhv 相态 3.0 km 28.0 0.57 0.95 冰水混合 25.4 1.89 0.91 冰水混合(含大水滴) 0.79 km 21.1 -0.14 0.92 小雪花 10.4 -0.21 0.93 冰粒 -
[1] 傅佩玲, 胡东明, 黄浩, 等.台风山竹(1822)龙卷的双极化相控阵雷达特征.应用气象学报, 2020, 31(6): 706-718. doi: 10.11898/1001-7313.20200606Fu P L, Hu D M, Huang H, et al.Observation of a tornado event in outside-region of Typhoon Mangkhut by X-band polarimetric phased array radar in 2018.J Appl Meteor Sci, 2020, 31(6): 706-718. doi: 10.11898/1001-7313.20200606 [2] 胡志群, 刘黎平, 肖艳姣.降水粒子空间取向对双线偏振雷达观测影响模拟研究.应用气象学报, 2008, 19(3): 362-366. doi: 10.3969/j.issn.1001-7313.2008.03.013Hu Z Q, Liu L P, Xiao Y J.A simulation study on faindrop orientation variation to dual linear polarimetric radar observation with different transmitting and receiving model.J Appl Meteor Sci, 2008, 19(3): 362-366. doi: 10.3969/j.issn.1001-7313.2008.03.013 [3] 林文, 张深寿, 罗昌荣, 等.不同强度强对流云系S波段双偏振雷达观测分析.气象, 2020, 46(1): 63-72.Lin W, Zhang S S, Luo C R, et al.Observational analysis of different intensity sever convective clouds by S-band dual-polarization radar.Meteor Mon, 2020, 46(1): 63-72. [4] 蒋银丰, 寇蕾蕾, 陈爱军, 等.双偏振雷达和双频测雨雷达反射率因子对比.应用气象学报, 2020, 31(5): 608-619. doi: 10.11898/1001-7313.20200508Jiang Y F, Kou L L, Chen A J, et al.Comparison of reflectivity factor of dual polarization radar and dual-frequency precipitation radar.J Appl Meteor Sci, 2020, 31(5): 608-619. doi: 10.11898/1001-7313.20200508 [5] 徐舒扬, 吴翀, 刘黎平.双偏振雷达水凝物相态识别算法的参数改进.应用气象学报, 2020, 31(3): 350-360. doi: 10.11898/1001-7313.20200309Xu S Y, Wu C, Liu L P.Parameter improvements of hydrometeor classification algorithm for the dual-polarimetric radar.J Appl Meteor Sci, 2020, 31(3): 350-360. doi: 10.11898/1001-7313.20200309 [6] 王洪, 孔凡铀, JungYoungsun, 等.面向资料同化的S波段双偏振雷达质量控制.应用气象学报, 2018, 29(5): 546-558. doi: 10.11898/1001-7313.20180504Wang H, Kong F Y, Jung Y S, et al.Quality control of S-band polarimetric radar measurements for data assimilation.J Appl Meteor Sci, 2018, 29(5): 546-558. doi: 10.11898/1001-7313.20180504 [7] Brandes E A, Ikeda K.Freezing-level estimation with polarimetric radar.Journal of Applied Meteorology, 2004, 43(11): 1541-1553. doi: 10.1175/JAM2155.1 [8] Giangrande S E, Krause J M, Ryzhkov A V.Automatic designation of the melting layer with a polarimetric prototype of the WSR-88D radar.J Appl Meteor Climatol, 2008, 47(5): 1354-1364. doi: 10.1175/2007JAMC1634.1 [9] 曹杨, 陈洪滨, 苏德斌.C波段双线偏振天气雷达零度层亮带识别和订正.应用气象学报, 2018, 29(1): 84-96. doi: 10.11898/1001-7313.20180108Cao Y, Chen H B, Su D B.Identification and correction of the bright band using a C-band dual polarization weather radar.J Appl Meteor Sci, 2018, 29(1): 84-96. doi: 10.11898/1001-7313.20180108 [10] Wu D, Zhao K, Kumjian M R, et al.Kinematics and microphysics of convection in the outer rainband of Typhoon Nida (2016) revealed by polarimetric radar.Mon Wea Rev, 2018, 146(7): 2147-2159. doi: 10.1175/MWR-D-17-0320.1 [11] 刘黎平, 郑佳锋, 阮征, 等.2014年青藏高原云和降水多种雷达综合观测试验及云特征初步分析结果.气象学报, 2015, 73(4): 635-647.Liu L P, Zheng J F, Ruan Z, et al.The preliminary analyses of the cloud properties over the Tibetan Plateau from the field experiments in clouds precipitation with the vavious radars.Acta Meteor Sinica, 2015, 73(4): 635-647. [12] Williams E R, Smalley D J, Donovan M F, et al.Measurements of differential reflectivity in snowstorms and warm season stratiform systems.J Appl Meteor Climatol, 2015, 54(3): 573-595. doi: 10.1175/JAMC-D-14-0020.1 [13] 杨忠林, 赵坤, 徐坤, 等.江淮梅雨期极端对流微物理特征的双偏振雷达观测研究.气象学报, 2019, 77(1): 58-72.Yang Z L, Zhao K, Xu K, et al. Microphysical characteristics of extreme convective precipitation over the Yangtze-Huaihe river basin during the Meiyu season based on polarimetric radar data.Acta Meteor Sinica, 2019, 77(1): 58-72. [14] Zawadzki I, Szyrmer W, Bell C, et al.Modeling of the melting layer. Part Ⅲ:The density effect.J Atmos Sci, 2005, 62(10): 3705-3723. doi: 10.1175/JAS3563.1 [15] Ryzhkov A, Zhang P, Reeves H, et al.Quasi-vertical profiles-A new way to look at polarimetric radar data.J Atmos Oceanic Technol, 2016, 33(3): 551-562. doi: 10.1175/JTECH-D-15-0020.1 [16] Kaltenboeck R, Ryzhkov A.A freezing rain storm explored with a C-band polarimetric weather radar using the QVP methodology.Meteorologische Zeitschrift, 2017, 26(2): 207-222. doi: 10.1127/metz/2016/0807 [17] 程周杰, 刘宪勋, 朱亚平.双偏振雷达对一次水凝物相态演变过程的分析.应用气象学报, 2009, 20(5): 594-601. doi: 10.3969/j.issn.1001-7313.2009.05.011Cheng Z J, Liu X X, Zhu Y P.A process of hydrometeor phase change with dual-polarimetric radar.J Appl Meteor Sci, 2009, 20(5): 594-601. doi: 10.3969/j.issn.1001-7313.2009.05.011 [18] 梅垚, 胡志群, 黄兴友.青藏高原对流云的偏振雷达观测研究.气象学报, 2018, 76(6): 1014-1028.Mei Y, Hu Z Q, Huang X Y.A study of convective clouds in the Tibetan Plateau based on dual polarimetric radar observations.Acta Meteor Sinica, 2018, 76(6): 1014-1028. [19] 张培昌, 杜秉玉, 戴铁丕.雷达气象学.北京:气象出版社, 2000: 118-119.Zhang P C, Du B Y, Dai T P.Radar Meteorology.Beijing:China Meteorological Press, 2000: 118-119. [20] 俞小鼎.关于冰雹的融化层高度.气象, 2014, 40(6): 649-654.Yu X D.A note on the melting level of hail.Meteor Mon, 2014, 40(6): 649-654. [21] 刘晓璐, 刘建西, 张世林, 等.基于探空资料因子组合分析方法的冰雹预报.应用气象学报, 2014, 25(2): 168-175. doi: 10.3969/j.issn.1001-7313.2014.02.006Liu X L, Liu J X, Zhang S L, et al.Hail forecast based on factor combination analysis method and sounding Data.J Appl Meteor Sci, 2014, 25(2): 168-175. doi: 10.3969/j.issn.1001-7313.2014.02.006 [22] 何彩芬, 黄旋旋, 卢晶晶.基于多普勒天气雷达产品的降雪及冻雨综合分析.应用气象学报, 2009, 20(6): 767-771. doi: 10.3969/j.issn.1001-7313.2009.06.016He C F, Huang X X, Lu J J.Comprehensive analysis on snow and freezing-rain events based on doppler weather radar in Ningbo.J Appl Meteor Sci, 2009, 20(6): 767-771. doi: 10.3969/j.issn.1001-7313.2009.06.016 [23] Bakhshaii A, Stull R.Saturated pseudoadiabats-A Noniterative approximation.J Appl Meteorol Climatol, 2013, 52(1): 5-15. doi: 10.1175/JAMC-D-12-062.1 [24] 顾震潮.云雾降水物理基础.北京:科学出版社, 1980: 173-179.Gu Z C.Base of Cloud and Mist Precipitation Physics.Beijing:Science Press, 1980: 173-179. [25] Park H S, Ryzhkov A V, Zrnić D S, et al.The hydrometeor classification algorithm for the polarimetric WSR-88D:Description and application to an MCS.Wea Forecasting, 2009, 24(3): 730-748. doi: 10.1175/2008WAF2222205.1 [26] Thompson E J, Rutledge S A, Dolan B, et al.A dual-polarization radar hydrometeor classification algorithm for winter precipitation.J Atmos Oceanic Technol, 2014, 31(7): 1457-1481. doi: 10.1175/JTECH-D-13-00119.1