Automatic Recognition Algorithm of Convergence Region Based on Relative Storm Radial Velocity Field
-
摘要: 该文提出一种从相对风暴的径向速度图中自动识别中层径向辐合特征的算法,即相对风暴中层径向辐合特征自动识别算法。算法首先识别出单仰角径向速度图上每个径向的正-负速度段,并按照一定规则对其进行配对,形成径向辐合段;然后在二维锥面上做水平相关分析得到二维径向辐合块,再对二维辐合块进行垂直相关分析,形成风暴的三维径向辐合体,计算其强度、厚度、中心高度等重要特征参数。利用2013年8月18日和2018年8月7日两次非典型“正-负速度区域对”径向辐合特征的飑线雷达资料对该算法进行测试,结果表明:径向辐合特征在相对风暴的径向速度图上的识别效果较原始径向速度场更优。统计分析特征参数与飑线大风的相关性表明:平均径向辐合强度、最大径向辐合强度、厚度与风速之间有较好的线性相关性,且均为正相关,其中平均径向辐合强度与风速之间的相关系数最大,达到0.79。通过算法识别的径向辐合特征可以提前约30 min预警飑线大风。
-
关键词:
- 相对风暴径向速度;
- 中层径向辐合;
- 相对风暴中层径向辐合;
- 雷暴大风
Abstract: An algorithm for automatically identifying the mid-altitude radial convergence from the storm-relative radial velocity field is proposed. The algorithm first identifies the positive-negative velocity segments in each radial direction on the single-elevation radial velocity field, before pairing them to form a radial convergence segment. A two-dimensional radial convergence block is obtained through horizontal correlation analysis, and then three-dimensional radial convergence body of the storm is obtained through vertical correlation analysis. Thus, the parameters such as strength, thickness and center height are calculated.The algorithm is verified using two squall line radar data with a typical "positive-negative velocity zone pairs" radial convergence characteristics, and the results show that the radial convergence feature identified in the relative storm radial velocity field is more complete than the original radial velocity field. The flow field of the meso-small-scale weather system is mainly composed of rotation and translation combined with ascending motion. When the translational motion speed is greater than the rotational speed, the shear (rotation, convergence, or divergence) of the system in the basic radial velocity field may be affected, while using the relative storm radial velocity can overcome this to identify the mid-level convergence better. A batch experiment of 10 thunderstorms and strong convective weather indicates the recognition accuracy of this algorithm is 82.4%, including a typical MARC features.Statistical analysis of the correlation between characteristic parameters and strength of squall line winds shows that the average radial convergence strength, maximum radial convergence strength, thickness have good positive linear correlations with wind speed. The correlation coefficient between convergence intensity and wind speed is the largest, reaching 0.79. According to the radial convergence characteristic parameter value, the intensity of the ground gale can be roughly judged, which provides a certain reference for the monitoring and early warning of convective gale and disaster assessment. The radial convergence feature identified by the algorithm can alert squall line gale about 30 minutes in advance. Therefore, the application of this algorithm will effectively improve the advancement of the warning signal release time. -
图 1 2016年8月6日23:34乐山雷达3.4°仰角反射率因子(a)、原始径向速度(b)以及处理后的相对风暴径向速度图(c)及对应沿黑色直线的反射率因子剖面图(d)、径向速度剖面图(e)和相对风暴径向速度剖面图(f)
(剖面由雷达站沿径向指向远离雷达侧)
Fig. 1 The reflectivity factor(a), raw radial velocity(b), processed relative storm radial velocity graph(c), corresponding reflectivity factor profile(d), radial velocity profile(e), and relative storm radial velocity profile(f) along the black lines based on Leshan Radar at 3.4° elevation angle at 2334 BT 6 Aug 2016
(the profile is directed away from the radar side by the radar station in the radial direction)
图 2 模拟的2016年8月7日01:00四川盆地飑线最大反射率因子(填色)以及中层环境风场(风羽,单位:m·s-1) (a), 沿图 2a红色直线的垂直剖面图(其中阴影为反射率因子,箭头为风矢量(风速矢量的垂直分量表示垂直速度的2.0倍),等值线为相对湿度(单位: %)) (b)
Fig. 2 Simulated maximum reflectance factor (the shaded) and mid-level environmental wind field (the barb, unit:m·s-1) of the squall line at 0100 BT 7 Aug 2016(a), vertical section along the red line in Fig. 2a (where the shaded is the reflectivity factor, the arrow is the wind vector(the vertical component of the wind speed vector represents 2.0 times of vertical velocity), the contour is relative humidity(unit:%)) (b)
图 3 径向辐合对示意图
(方格内数值为等距离抽取图 1c中剖面线所在径向上有效范围内的径向速度整数值,单位:m·s-1,开始和结束的径向距离分别为51 km和61 km)
Fig. 3 Schematic diagram of radial convergence pair
(the values are the integral values of radial velocity(unit:m·s-1) in the radial direction of the section line in Fig. 1c, and the radial distances at the beginning and the end are 51 km and 61 km, respectively)
图 5 2013年8月18日00:49宜宾雷达2.4°仰角反射率因子(a)、原始径向速度(b)以及2018年8月7日20:15南充雷达4.3°仰角反射率因子(c)、原始径向速度(d)
(实线和虚线分别表示原始和相对风暴径向速度场上识别出的径向辐合块,标注A,B,C,E,F,G分别代表算法识别出的径向辐合块)
Fig. 5 The reflectivity factor(a) and raw radial velocity(b) based on Yibin radar station at 2.4° elevation angle at 0049 BT 18 Aug 2013 and the reflectivity factor(c) and original radial velocity(d) based on Nanchong radar station at 4.3° elevation angle at 2015 BT 7 Aug 7 2018
(the solid line and the dashed line respectively represent the radial convergent blocks identified in the RRV and RSRV, and the labels A, B, C, E, F and G represent the radial convergent blocks identified by the algorithm)
表 1 检验识别算法的飑线个例及识别结果
Table 1 Examples of squall line to test the recognition algorithm and recognition result
时间 是否典型MARC特征 测试样本量 算法成功识别样本量 雷达站名 2009-07-26T01:00—02:40 是 5 4 广元 2010-06-20T19:30—21:30 是 4 2 南充 2012-08-18T19:00—20:50 是 8 7 宜宾 2013-08-18T00:00—02:00 是 7 7 宜宾 2015-07-27T20:00—21:00 是 4 2 宜宾 2016-06-04T13:00—15:00 非 6 5 广元 2016-08-06T22:00—23:50 非 5 5 乐山 2016-08-14T22:40—23:50 非 8 6 宜宾 2017-07-16T00:00—01:30 是 4 4 成都 2018-08-07T19:00—20:40 非 6 5 南充 -
[1] Przybylinski R W.The bow echo:Observations, numerical simulations, and severe weather detection methods.Wea Forecasting, 1995, 10(2): 203-218. doi: 10.1175/1520-0434(1995)010<0203:TBEONS>2.0.CO;2 [2] Lemon L R, Burgess D W.Supercell Associated Deep Convergence Zone Revealed by a WSR-88D//Preprints, 26th Int Conf on Radar Meteorology, Norman, OK, Amer Meteor Soc, 1993: 206-208. [3] Lemon L R, Parker S.The Lahoma Storm Deep Convergence Zone: Its Characteristics and Role in Storm Dynamics and Severity//Preprints, 18th Conf on Severe Storms, San Francisco, CA, Amer Meteor Soc, 1996: 70-74. [4] 慕熙昱, 党人庆, 陈秋萍, 等.一次飑线过程的雷达回波分析与数值模拟.应用气象学报, 2007, 18(1): 42-49. doi: 10.3969/j.issn.1001-7313.2007.01.006Mu X Y, Dang R Q, Chen Q P, et al.Radar data analysis and numerical simulation of a squall line.J Appl Meteor Sci, 2007, 18(1): 42-49. doi: 10.3969/j.issn.1001-7313.2007.01.006 [5] 陈贵川, 谌芸, 乔林, 等.重庆"5.6"强风雹天气过程成因分析.气象, 2011, 37(7): 871-879.Chen G C, Chen Y, Qiao L, et al.The causation analysis of the 6 May 2010 severe windstorm weather process in Chongqing.Meteor Mon, 2011, 37(7): 871-879. [6] 谢健标, 林良勋, 颜文胜, 等.广东2005年"3·22"强飑线天气过程分析.应用气象学报, 2007, 18(3): 321-329. doi: 10.3969/j.issn.1001-7313.2007.03.008Xie J B, Lin L X, Yan W S, et al.Dynamic diagnosis of an infrequent squall line in Guangdong on March 22, 2005.J Appl Meteor Sci, 2007, 18(3): 321-329. doi: 10.3969/j.issn.1001-7313.2007.03.008 [7] 漆梁波, 陈永林.一次长江三角洲飑线的综合分析.应用气象学报, 2004, 15(2): 162-173. http://yyqxxb.xml-journal.net/article/id/20040221Qi L B, Chen Y L.Synthetic analysis of squall in yangtze river delta.J Appl Meteor Sci, 2004, 15(2): 162-173. http://yyqxxb.xml-journal.net/article/id/20040221 [8] 陈淑琴, 章丽娜, 俞小鼎, 等.浙北沿海连续3次飑线演变过程的环境条件.应用气象学报, 2017, 28(3): 357-368. doi: 10.11898/1001-7313.20170309Chen S Q, Zhang L N, et al.Environmental conditions of three squall lines in the north part of Zhejiang Province.J Appl Meteor Sci, 2017, 28(3): 357-368. doi: 10.11898/1001-7313.20170309 [9] 姚建群, 戴建华, 姚祖庆.一次强飑线的成因及维持和加强机制分析.应用气象学报, 2005, 16(6): 746-752. doi: 10.3969/j.issn.1001-7313.2005.06.005Yao J Q, Dai J H, Yao Z Q.Case analysis of the formation and evolution of 12 July 2004 severe squall line.J Appl Meteor Sci, 2005, 16(6): 746-752. doi: 10.3969/j.issn.1001-7313.2005.06.005 [10] 杨璐, 陈明轩, 孟金平, 等.北京地区雷暴大风不同生命期内的雷达统计特征及预警提前量分析.气象, 2018, 44(6): 802-813.Yang L, Chen M X, Meng J P, et al.Radar statistical characteristics and warning lead analysis of thunderstorm gales in different life periods in Beijing.Meteor Mon, 2018, 44(6): 802-813. [11] 俞小鼎, 张爱民, 郑媛媛, 等.一次系列下击暴流事件的多普勒天气雷达分析.应用气象学报, 2006, 17(4): 385-393. doi: 10.3969/j.issn.1001-7313.2006.04.001Yu X D, Zhang A M, Zheng Y Y, et al.Doppler radar analysis on a series of downburst events.J Appl Meteor Sci, 2006, 17(4): 385-393. doi: 10.3969/j.issn.1001-7313.2006.04.001 [12] 吴芳芳, 王慧, 韦莹莹, 等.一次强雷暴阵风锋和下击暴流的多普勒雷达特征.气象, 2009, 35(1): 55-64.Wu F F, Wang H, Wei Y Y, et al.Analysis of a strong gust front and downburst with Doppler weather radar data.Meteor Mon, 2009, 35(1): 55-64. [13] 姚叶青, 俞小鼎, 张义军, 等.一次典型飑线过程多普勒天气雷达资料分析.高原气象, 2008, 27(2): 373-381.Yao Y Q, Yu X D, Zhang Y J, et al.Analysis on a typical squall line case with Doppler weather radar data.Plateau Meteorology, 2008, 27(2): 373-381. [14] 农孟松, 翟丽萍, 屈梅芳, 等.广西一次飑线大风天气的成因和预警分析.气象, 2014, 40(12): 1491-1499. doi: 10.7519/j.issn.1000-0526.2014.12.007Nong M S, Zhai L P, Qu M F, et al.Study on initialization mechanism and alert of gale in squall line storm event.Meteor Mon, 2014, 40(12): 1491-1499. doi: 10.7519/j.issn.1000-0526.2014.12.007 [15] 章国材, 矫梅燕, 李延香.现代天气预报技术和方法.北京:气象出版社, 2007.Zhang G C, Jiao M Y, Li Y X.Modern Weather Forecasting Techniques and Methods.Beijing:China Meteorological Press, 2006. [16] Schmocker G K, Przybylinski R W, Lin Y J.Forecasting the Initial Onset of Damaging Downburst Winds Associated with a Mesoscale Convective System (MCS) Using the Mid-altitude Radial Convergence (MARC) Signature//Preprints, 15th Conf on Weather Analysis and Forecasting, Norfolk, VA, Amer Meteor Soc, 1996: 306-311. [17] 吴翠红, 韦惠红, 牛奔.湖北东部雷暴大风雷达回波特征分析.大气科学学报, 2012, 35(1): 64-72. doi: 10.3969/j.issn.1674-7097.2012.01.007Wu C H, Wei H H, Niu Ben.Radar echo characteristics analysis for thunderstorm gale in eastern Hubei Province.Trans Atmos Sci, 2012, 35(1): 64-72. doi: 10.3969/j.issn.1674-7097.2012.01.007 [18] 郑佳锋, 张杰, 朱克云, 等.阵风锋自动识别与预警.应用气象学报, 2013, 24(1): 117-125. doi: 10.3969/j.issn.1001-7313.2013.01.012Zheng J F, Zhang Jie, Zhu K Y, et al.Automatic identification and alert of gust fronts.J Appl Meteor Sci, 2013, 24(1): 117-125. doi: 10.3969/j.issn.1001-7313.2013.01.012 [19] 陈明轩, 高峰.利用一种自动识别算法移除天气雷达反射率因子中的亮带.应用气象学报, 2006, 17(2): 207-214. doi: 10.3969/j.issn.1001-7313.2006.02.011Chen M X, Gao F.An automatic identification algorithm for the removal of bright band from reflectivity of CINRAD/SA.J Appl Meteor Sci, 2006, 17(2): 207-214. doi: 10.3969/j.issn.1001-7313.2006.02.011 [20] 张乐坚, 程明虎, 陶岚.CINRAD-SA/SB零度层亮带识别方法.应用气象学报, 2010, 21(2): 171-179. http://yyqxxb.xml-journal.net/article/id/20100206Zhang L J, Cheng M H, Tao L.Bright band identification from CINRAD-SA/SB.J Appl Meteor Sci, 2010, 21(2): 171-179. http://yyqxxb.xml-journal.net/article/id/20100206 [21] 王萍, 牛智勇.基于多普勒天气雷达数据的中层径向辐合自动识别及其与强对流天气的相关性研究.物理学报, 2014, 63(1): 424-436.Wang P, Niu Z Y.Automatic recongniton of mid-altitude radial convergence and study on the relationship between the convergence and strong convective weather based on Doppler weather radar data.Acta Physica Sinica, 2014, 63(1): 424-436. [22] 肖艳姣.基于多普勒天气雷达体扫资料的MARC特征自动识别算法.高原气象, 2018, 37(1): 264-274.Xiao Y J.An algorithm of recognizing automatically MARC signature using the Doppler weather radar volume scanning data.Plateau Meteorology, 2018, 37(1): 264-274. [23] 俞小鼎, 姚秀萍, 熊廷南, 等.多普勒天气雷达原理与业务应用.北京:气象出版社, 2006.Yu X D, Yao X P, Xiong T N, et al.Doppler Weather Radar Principle and Business Application.Beijing:China Meteorological Press, 2006. [24] 梁建宇, 孙建华.2009年6月一次飑线过程灾害性大风的形成机制.大气科学, 2012, 36(2): 316-336.Liang J Y, Sun J H.The formation mechanism of damaging surface wind during the squall line in June 2009.Chinese Journal of Atmospheric Sciences, 2012, 36(2): 316-336. [25] 肖艳姣, 万玉发, 王志斌.业务多普勒天气雷达双PRF径向速度资料分析和质量控制.高原气象, 2016, 35(4): 1112-1122.Xiao Y J, Wan Y F, Wang Z B.Quality control of dual PRF velocity data for Doppler weather radars.Plateau Meteorology, 2016, 35(4): 1112-1122.