Characteristics and Mechanisms of Long-lived Concentric Eyewalls in Typhoon Lekima in 2019
-
摘要: 利用CIMSS微波卫星产品和多普勒天气雷达资料,分析超强台风利奇马(1909)的长时间双眼墙特征,并采用集合卡尔曼滤波方法同化雷达径向风资料,诊断利奇马双眼墙的三维结构演变特征。结果表明:在双眼墙演变过程初期,受强垂直风切变和中高层干空气入侵的影响,外眼墙对流减弱,呈非对称特征。Sawyer-Eliassen方程诊断结果显示:台风利奇马(1909)内、外眼墙次级环流之间的相互作用不明显,不同于发生眼墙替换过程的台风,其外眼墙处非绝热加热引起的下沉运动发生在内眼的眼心,内眼墙的上升运动并未受到外眼墙次级环流抑制。另外,在强垂直风切变条件下,非对称的外眼墙不能持续增强收缩并取代内眼墙,因此双眼墙结构得以长时间维持。可见,台风利奇马(1909)外眼墙的非对称结构和特殊的次级环流分布是其双眼墙能够长期维持的重要原因。
-
关键词:
- 台风利奇马(1909);
- 双眼墙;
- 同化分析
Abstract: The structure change of typhoon eyewall has important influences on tropical cyclone (TC) intensity, and it brings great difficulties to TC intensity forecast. Compared to the TC with only one eyewall, the dynamic and physical processes controlling the intensity change of concentric eyewalls are much more complex. Strengthening the research on this type of typhoons is conducive to improve the understanding of the structure and intensity change of TC. Recently, the process of eyewall replacement cycle (ERC) is well understood, but the mechanism of concentric eyewalls maintenance (CEM) remains unclear. Therefore, it is necessary to use a variety of observation data, numerical model, and data assimilation methods to analyze real typhoons to further explore the mechanism of CEM.The evolution of concentric eyewalls in Typhoon Lekima in 2019 is analyzed with CIMSS microwave satellite images, Wenzhou Doppler radar in China and Ishigaki radar in Japan. Observational analysis indicates that secondary eyewall formation (SEF) happens at about 0600 UTC 8 August 2019. Unlike most concentric-eyewall typhoons, Typhoon Lekima has not undergone ERC, and the concentric eyewalls in Typhoon Lekima maintains for 35 hours.Meanwhile, a numerical experiment of Typhoon Lekima is performed using a WRF-based ensemble Kalman filtering (EnKF) data assimilation system. The evolution process of Typhoon Lekima is reproduced by the results of the analysis after assimilating the Ishigaki radar radial wind, and the simulated track, intensity, and structure are basically consistent with observational analysis. Therefore, based on the EnKF analysis fields, evolution characteristics of three-dimensional eyewalls structure in Typhoon Lekima are further analyzed. The results show that, in the initial stage of SEF, the inertial stability of the middle and lower layers of typhoon is high, and the thermal conditions of the environmental are conducive to the development of Typhoon Lekima. However, due to the strong vertical wind shear (VWS) and dry air intrusion in the mid-upper level, the outer eyewall has a weakening and asymmetric process. In addition, the maintenance mechanism of persistent concentric eyewalls is studied from the perspective of transverse circulation. The Sawyer-Eliassen diagnose is performed to investigate the transverse circulation and to reveal that the interference between the convection/subsidence couplet of the inner and outer eyewalls transverse circulation is not obvious so that the convection of the inner eyewall is not inhibited by the outer eyewall, and the inner eyewall maintains. Under the condition of strong VWS, the asymmetric outer eyewall cannot continuously enhance or contract and replace the inner eyewall, the structure of concentric eyewalls can be maintained for a long time. The structure of the outer eyewall and the distribution of transverse circulation in Typhoon Lekima play an important role in the maintenance of concentric eyewalls. -
图 1 2019年8月3日18:00—14日12:00日本石垣岛雷达(蓝色圆圈)和中国温州雷达(红色圆圈)的扫描覆盖范围与台风利奇马(1909)实测路径示意图(3 h间隔)
Fig. 1 The scanning coverage of Ishigaki radar in Japan (the blue circle) and Wenzhou radar in China(the red circle) with the best track of Typhoon Lekima from 1800 UTC 3 Aug to 1200 UTC 14 Aug in 2019(3 h interval)
图 11 Sawyer-Eliassen方程诊断的2019年8月8日15:00径向风速(等值线,单位:m·s-1)和垂直速度(填色)
(a)内、外眼墙共同加热,(b)仅内眼墙加热,(c)仅外眼墙加热
Fig. 11 The radial wind(the contour, unit:m·s-1) and vertical velocity(the shaded) for Sawyer-Eliassen diagnosis at 1500 UTC 8 Aug 2019
(a)heated by inner and outer eyewalls, (b)heated by inner eyewall only, (c)heated by outer eyewall only
-
[1] Willoughby H E,Black P G.H urricane Andrew in Florida: Dynamics of a disaster. Bull Amer Meteor Soc, 1996, 77: 543-549. doi: 10.1175/1520-0477(1996)077<0543:HAIFDO>2.0.CO;2 [2] Irish J L, Resio D T, Ratcliff J J. The influence of storm size on hurricane surge. J Phys Oceanogr, 2008, 38: 2003-2013. doi: 10.1175/2008JPO3727.1 [3] Hawkins J D, Helveston M. Tropical Cyclone Multiple Eyewall Characteristics. 28th Conf on Hurricanes and Tropical Meteorology, Bull Amer Meteor Soc, 2008. http://ams.confex.com/ams/26HURR/techprogram/paper_76084.htm [4] Kuo H C, Chang C P, Yang Y T, et al. Western North Pacific typhoons with concentric eyewalls. Mon Wea Rev, 2008, 137(11): 3758-3770. http://www.zhangqiaokeyan.com/ntis-science-report_other_thesis/02071314233.html [5] Sitkowski M, Kossin J P, Rozoff C M. Intensity and structure changes during hurricane eyewall replacement cycles. Mon Wea Rev, 2011, 139: 3829-3847. doi: 10.1175/MWR-D-11-00034.1 [6] Shimada U, Sawada M, Yamada H. Doppler radar analysis of the rapid intensification of Typhoon Goni(2015) after eyewall replacement. J Atmos Sci, 2018, 45: 143-162. http://adsabs.harvard.edu/abs/2018JAtS...75..143S [7] Tsujino S, Tsuboki K, Kuo H. Structure and maintenance mechanism of long-lived concentric eyewalls associated with simulated Typhoon Bolaven(2012). J Atmos Sci, 2017, 74: 3609-3634. doi: 10.1175/JAS-D-16-0236.1 [8] Yang Y T, Kuo H C, Hendricks E A, et al. Structural and intensity changes of concentric eyewall typhoons in the western North Pacific basin. Mon Wea Rev, 2013, 141: 2632-2648. doi: 10.1175/MWR-D-12-00251.1 [9] Yang Y T, Hendricks E A, Kuo H C, et al. Long-lived concentric eyewalls in Typhoon Soulik(2013). Mon Wea Rev, 2014, 142: 3365-3371. doi: 10.1175/MWR-D-14-00085.1 [10] Zhang G, Perrie W. Effects of asymmetric secondary eyewall on tropical cyclone evolution in Hurricane Ike(2008). Geophys Res Lett, 2018, 45(3): 1676-1683. doi: 10.1002/2017GL076988 [11] Kossin J P, Schubert W H, Montgomery M T. Unstable interaction between a hurricane's primary eyewall and a secondary ring of enhanced vorticity. J Atmos Sci, 2000, 57: 3893-3917. doi: 10.1175/1520-0469(2001)058<3893:UIBAHS>2.0.CO;2 [12] Shapiro L J, Willoughby H E. The response of balanced hurricanes to local sources of heat and momentum. J Atmos Sci, 1982, 39: 378-394. doi: 10.1175/1520-0469(1982)039<0378:TROBHT>2.0.CO;2 [13] Huang Y H, Montgomery M T, Wu C C. Concentric eyewall formation in Typhoon Sinlaku(2008). Part Ⅱ: Axisymmetric dynamical processes. J Atmos Sci, 2012, 69: 662-674. doi: 10.1175/JAS-D-11-0114.1 [14] Huang Y H, Wu C C, Montgomery M T. Concentric eyewall formation in Typhoon Sinlaku(2008). Part Ⅲ: Horizontal momentum Budget analyses. J Atmos Sci, 2018, 75: 3541-3563. doi: 10.1175/JAS-D-18-0037.1 [15] Abarca S F, Montgomery M T, Braun S A, et al. On the secondary eyewall formation of Hurricane Edouard(2014). Mon Wea Rev, 2016, 144: 3321-3331. doi: 10.1175/MWR-D-15-0421.1 [16] Willoughby H E, Clos J A, Shoreibah M G. Concentric eye walls, secondary wind maxima, and the evolution of the hurricane vortex. J Atmos Sci, 1982, 39: 395-411. doi: 10.1175/1520-0469(1982)039<0395:CEWSWM>2.0.CO;2 [17] Rozoff C M, Schubert W H, Kossin J P. Some dynamical aspects of tropical cyclone concentric eyewalls. Quart J Roy Meteor Soc, 2008, 134: 583-593. doi: 10.1002/qj.237 [18] Rozoff C M, Nolan D S, Kossin J P, et al. The roles of an expanding wind field and inertial stability in tropical cyclone secondary eyewall formation. J Atmos Sci, 2012, 69: 2621-2643. doi: 10.1175/JAS-D-11-0326.1 [19] Zhu Z, Zhu P. The role of outer rainband convection in governing the eyewall replacement cycle in numerical simulations of tropical cyclones. J Geophys Res Atmos, 2014, 119(13): 8049-8072. doi: 10.1002/2014JD021899 [20] Zhou X, Wang B. Mechanism of concentric eyewall replacement cycles and associated intensity change. J Atmos Sci, 2011, 68: 972-988. doi: 10.1175/2011JAS3575.1 [21] 管靓, 张宇昕, 葛旭阳, 等. 西北太平洋台风同心眼墙影响因子的初步分析. 大气科学学报, 2019, 42(4): 492-501. https://www.cnki.com.cn/Article/CJFDTOTAL-NJQX201904002.htmGuan L, Zhang Y, Ge X, et al. Preliminary analysis on influencing factors of secondary eyewall formation over Northwest Pacific. Trans Atmos Sci, 2019, 42(4): 492-501. https://www.cnki.com.cn/Article/CJFDTOTAL-NJQX201904002.htm [22] 杨舒楠, 端义宏. 台风温比亚(1818)降水及环境场极端性分析. 应用气象学报, 2020, 31(3): 290-302. https://www.cnki.com.cn/Article/CJFDTOTAL-YYQX202003004.htmYang S, Duan Y. Extremity analysis on the precipitation and environmental field of Typhoon Rumbia in 2018. J Appl Meteor Sci, 2020, 31(3): 290-302. https://www.cnki.com.cn/Article/CJFDTOTAL-YYQX202003004.htm [23] Kepert J D. How does the boundary layer contribute to eyewall replacement cycles in axisymmetric tropical cyclones?. J Atmos Sci, 2013, 70: 2808-2830. doi: 10.1175/JAS-D-13-046.1 [24] Wang Y. How do outer spiral rainbands affect tropical cyclone structure and intensity?. J Atmos Sci, 2009, 66(5): 1250-1273. doi: 10.1175/2008JAS2737.1 [25] Stern D P, Zhang F. The warm-core structure of Hurricane Earl(2010). J Atmos Sci, 2016, 73: 3305-3328. doi: 10.1175/JAS-D-15-0328.1 [26] Zhou X, Wang B. Large-scale influences on secondary eyewall size. J Geophys Res, 2013, 118(19): 11088-11097. doi: 10.1002/jgrd.50605 [27] 常婉婷, 高文华, 端义宏, 等. 云微物理过程对台风数值模拟的影响. 应用气象学报, 2019, 30(4): 443-455. doi: 10.11898/1001-7313.20190405Chang W, Gao W, Duan Y, et al. The impact of cloud microphysical processes on typhoon numerical simulation. J Appl Meteor Sci, 2019, 30(4): 443-455. doi: 10.11898/1001-7313.20190405 [28] 杨挺, 端义宏, 徐晶, 等. 城市效应对登陆热带气旋妮妲降水影响的模拟. 应用气象学报, 2018, 29(4): 410-422. doi: 10.11898/1001-7313.20180403Yang T, Duan Y, Xu J, et al. Simulation of the urbanization impact on precipitation of landfalling Tropical Cyclone Nida(2016). J Appl Meteor Sci, 2018, 29(4): 410-422. doi: 10.11898/1001-7313.20180403 [29] 张晓慧, 张立凤, 周海申, 等. 双台风相互作用及其影响. 应用气象学报, 2019, 30(4): 456-466. 双台风相互作用及其影响Zhang X, Zhang L, Zhou H, et al. Interaction and influence of binary typhoons. J Appl Meteor Sci, 2019, 30(4): 456-466. 双台风相互作用及其影响 [30] Wu C C, Huang Y H, Lien G Y. Concentric eyewall formation in Typhoon Sinlaku(2008). Part Ⅰ: Assimilation of T-PARC data based on the ensemble Kalman filter(EnKF). Mon Wea Rev, 2012, 140: 506-527. doi: 10.1175/MWR-D-11-00057.1 [31] 林文, 林长城, 李白良, 等. 登陆台风麦德姆不同部位降水强度及谱特征. 应用气象学报, 2016, 27(2): 239-248. doi: 10.11898/1001-7313.20160212Lin W, Lin C, Li B, et al. Rainfall intensity and raindrop spectrum for different parts in landing Typhoon Matmo. J Appl Meteor Sci, 2016, 27(2): 239-248. doi: 10.11898/1001-7313.20160212 [32] 张康波, 冯明轩, 雷德义. 台风"利奇马"防御工作回顾. 中国防汛抗旱, 2019, 29(11): 1-3;8. https://www.cnki.com.cn/Article/CJFDTOTAL-FHKH201911007.htmZhang K, Feng M, Lei D. Review of the defense work of Typhoon Lekima No. 201909. China Flood & Drought Management, 2019, 29(11): 1-3;8. https://www.cnki.com.cn/Article/CJFDTOTAL-FHKH201911007.htm [33] Zhang F, Weng Y, Sippel J A, et al. Cloud-resolving hurricane initialization and prediction through assimilation of Doppler radar observations with an ensemble Kalman filter. Mon Wea Rev, 2009, 137(7): 2105-2125. doi: 10.1175/2009MWR2645.1 [34] Kossin J P, Sitkowski M. An objective model for identifying secondary eyewall formation in hurricanes. Mon Wea Rev, 2009, 137: 876-892. doi: 10.1175/2008MWR2701.1 [35] Dougherty E M, Molinari J, Rogers R F, et al. Hurricane Bonnie(1998): Maintaining intensity during high vertical wind shear and an eyewall replacement cycle. Mon Wea Rev, 2018, 146: 3383-3399. doi: 10.1175/MWR-D-18-0030.1 [36] Yoshiaki M, Nolan D S, Norihiko S. A dynamical mechanism for secondary eyewall formation in tropical cyclones. J Atmos Sci, 2018, 75: 3965-3986. doi: 10.1175/JAS-D-18-0042.1 [37] 朱雪松, 余晖, 尹球, 等. 台风"梅花"(1109)双眼墙生消过程的卫星资料分析. 热带气象学报, 2014, 30(1): 34-44. doi: 10.3969/j.issn.1004-4965.2014.01.004Zhu X, Yu H, Yin Q, et al. Satellite-based analysis of concentric eyewall replacement cycles with Super Typhoon Muifa. J Trop Meteor, 2014, 30(1): 34-44. doi: 10.3969/j.issn.1004-4965.2014.01.004 [38] 黄先香, 俞小鼎, 炎利军, 等. 广东两次台风龙卷的环境背景和雷达回波对比. 应用气象学报, 2018, 29(1): 70-83. doi: 10.11898/1001-7313.20180107Huang X, Yu X, Yan L, et al. Contrastive analysis of two intense typhoon-tornado cases with synoptic and Doppler weather radar data in Guangdong. J Appl Meteor Sci, 2018, 29(1): 70-83. doi: 10.11898/1001-7313.20180107 [39] 傅佩玲, 胡东明, 黄浩, 等. 台风山竹(1822)龙卷的双极化相控阵雷达特征. 应用气象学报, 2020, 31(6): 706-718. doi: 10.11898/1001-7313.20200606Fu P, Hu D, Huang H, et al. Observation of a tornado event in outside-region of Typhoon Mangkhut by X-band polarimetric phased array radar in 2018. J Appl Meteor Sci, 2020, 31(6): 706-718. doi: 10.11898/1001-7313.20200606 [40] Feng J, Duan Y, Wan Q, et al. Improved prediction of landfalling tropical cyclone in China based on assimilation of radar radial winds with new super-observation processing. Wea Forecasting, 2020, 35(6): 2523-2539. doi: 10.1175/WAF-D-20-0002.1 [41] Duan Y, Wan Q, Huang J, et al. Landfalling Tropical Cyclone Research Project (LTCRP) in China. Bull Amer Meteor Soc, 2019, 100: ES447-ES472. doi: 10.1175/BAMS-D-18-0241.1 [42] Zhang F Q, Snyder C, Sun J. Tests of an ensemble Kalman filter for convective-scale data assimilation: Impact of initial estimate and observations. Mon Wea Rev, 2004, 132: 1238-1253. doi: 10.1175/1520-0493(2004)132<1238:IOIEAO>2.0.CO;2 [43] Evensen G. The ensemble Kalman filter: Theoretical formulation and practical implementation. Ocean Dynamics, 2003, 53(4): 343-367. doi: 10.1007/s10236-003-0036-9 [44] 冯佳宁, 端义宏, 徐晶, 等. 雷达资料同化对2015年台风彩虹数值模拟改进. 应用气象学报, 2017, 28(4): 399-413. doi: 10.11898/1001-7313.20170402Feng J, Duan Y, Xu J, et al. Improving the simulation of Typhoon Mujigae(2015) based on radar data assimilation. J Appl Meteor Sci, 2017, 28(4): 399-413. doi: 10.11898/1001-7313.20170402 [45] 何立富, 陈双, 郭云谦. 台风利奇马(1909)极端强降雨观测特征及成因. 应用气象学报, 2020, 31(5): 513-526. doi: 10.11898/1001-7313.20200501He L, Chen S, Guo Y. Observation characteristics and synoptic Mechanisms of Typhoon Lekima extreme rainfall in 2019. J Appl Meteor Sci, 2020, 31(5): 513-526. doi: 10.11898/1001-7313.20200501