A Calibration Method of Wind Profile Radar Echo Intensity with Doppler Velocity Spectrum
-
摘要: 风廓线雷达已在我国得到大范围的业务布网应用,现有业务产品主要为风场信息。为了充分发挥风廓线雷达的作用,获取更多的天气过程信息,该文提出仅使用风廓线雷达返回信号功率谱进行数据定标(DCNP)的方法。使用雷达系统噪声功率对返回信号功率谱单位幅度进行标校计算,基于标校后的雷达探测功率谱分布数据计算回波强度功率谱密度分布、回波强度、大气折射率结构常数。利用2017年北京风廓线雷达、2016年南京风廓线雷达和2018年梅州风廓线雷达观测数据,对我国业务运行的3种主要型号风廓线雷达进行算法评估试验。定标方法的计算结果稳定,风廓线雷达不同探测模式之间的一致性较好。使用每个测站定标结果与相邻天气雷达数据进行比较,风廓线雷达回波强度定标结果与天气雷达也有较好的一致性。DCNP方法与基于信噪比(SNR)的强度计算方法进行比较,与SNR方法相比,DCNP方法定标结果更加稳定可靠。Abstract: The L-band wind profile radar(WPR) detects the Bragg scattering processes from back scattered energy of changes in refractive index, meanwhile it is high sensitive to Rayleigh scattering processes from back scattered energy of hydrometeors in the precipitating clouds. A method named data calibration with noise power (DCNP) is established for calibrating WPR return signal, in which the Doppler velocity spectrum is processed with FFT. The power of unit amplitude in return signal power spectrum is calculated based on radar noise power. Using calibrated power spectrum, echo intensity spectral density, echo intensity and structure parameter of refractive index are derived, and can be used to study vertical structure of precipitating clouds, microphysical properties, and clear air turbulences. The errors derived from noise temperature and noise amplitude are discussed. When the range of actual noise temperature is from 280 to 320 K, the error range caused by using 300 K to calculate noise power is from -0.28 to 0.3 dB. For each observation mode, the fluctuation of monthly average noise amplitude at the last gate is stable, nearly in normal distribution. The error caused by noise amplitude is between -0.3 and 0.3 dB. The method is estimated with data from Beijing (54399) in 2017, Nanjing (58235) in 2016 and Meizhou (59303) in 2018. These WPR types are different, and they are the main types in operation. Three precipitation cases from different stations are used to estimate the calibration method. It shows that the magnitudes between echo intensities calculated with DCNP and weather radars are similar. The evolutions of the two sorts of echo intensity products are also simultaneous. Estimations show that consistence between different observation mode is good. The difference between the high and low mode from Meizhou (59303) is the smallest. The differences between modes from Beijing (54399) are larger than the other two stations. It is consistent with the range of noise amplitude from the farthest gate in each observation mode. Compared with nearby weather radars, the consistence between WPRs and weather radars is also good considering different observation modes. The calibration method is proved stable and reliable. Radar echo intensity calculated with DCNP is compared with that derived from SNR. In most cases, values from the two methods are well consistent. When noise amplitude is large, the echo intensities identified by the method with SNR are usually lower than the values derived from the method using DCNP. The error from turbulence is analyzed with two-peak spectrum from Meizhou (59303). It indictes that the return signal from turbulence can be ignored for the cases.
-
Key words:
- wind profile radar;
- power spectrum;
- data calibration;
- noise power;
- echo intensity
-
图 5 北京风廓线雷达(54399)观测的2017年8月22日05:00—17:00降水过程与天气雷达对比
(a)DCNP回波强度,(b) RCSNR回波强度,(c)风廓线距离订正后SNR,(d)天气雷达回波强度
Fig. 5 Precipitating clouds of Beijing wind profile radar(54399) and weather radar from 0500 UTC to 1700 UTC on 22 Aug 2017
(a)wind profile radar echo intensity calculated with DCNP, (b)wind profile radar echo intensity calculated with RCSNR, (c)range-corrected wind profile radar SNR, (d)weather radar echo intensity
图 6 南京风廓线雷达(58235)观测的2016年6月30日20:00—7月1日12:00降水过程与天气雷达对比
(a)DCNP回波强度,(b)RCSNR回波强度,(c)风廓线距离订正后SNR,(d)天气雷达回波强度
Fig. 6 Precipitating clouds of Nanjing wind profile radar(58235) and wheather radar from 2000 UTC 30 Jun to 1200 UTC 1 Jul in 2016
(a)wind profile radar echo intensity calculated with DCNP, (b)wind profile radar echo intensity calculated with RCSNR, (c)range-corrected wind profile radar SNR, (d)weather radar echo intensity
图 7 梅州风廓线雷达(59303)观测的2018年6月6日06:00—24:00降水过程与天气雷达对比
(a)DCNP回波强度,(b)RCSNR回波强度,(c)风廓线距离订正后SNR,(d)天气雷达回波强度
Fig. 7 Precipitating clouds of Meizhou wind profile radar(59303) and weather radar from 0600 UTC to 2400 UTC on 6 Jun in 2018
(a)wind profile radar echo intensity calculated with DCNP, (b)wind profile radar echo intensity calculated with RCSNR, (c)range-corrected wind profile radar SNR, (d)weather radar echo intensity
-
[1] 邓华, 廖菲, 张旭斌, 等. 风廓线雷达资料对华南区域模式预报的影响. 应用气象学报, 2017, 28(5): 600-610. doi: 10.11898/1001-7313.20170508Deng H, Liao F, Zhang X B, et al. Impact of wind profiler data on regional model prediction in South China. J Appl Meteor Sci, 2017, 28(5): 600-610. doi: 10.11898/1001-7313.20170508 [2] 余贞寿, 冀春晓, 杨程, 等. 同化风廓线雷达资料对浙江降水预报改进评估. 应用气象学报, 2018, 29(1): 97-110. doi: 10.11898/1001-7313.20180109Yu Z S, Ji C X, Yang C, et al. Impacts of assimilating wind profiler radar observations on precipitation prediction in Zhejiang Province. J Appl Meteor Sci, 2018, 29(1): 97-110. doi: 10.11898/1001-7313.20180109 [3] 何平. 相控阵风廓线雷达. 北京: 气象出版社, 2006.He P. Phased Array Wind Profiler Radar. Beijing: China Meteorological Press, 2006. [4] 林晓萌, 尉英华, 陈宏, 等. 降水时风廓线雷达风场反演效果评估. 应用气象学报, 2020, 31(3): 361-372. doi: 10.11898/1001-7313.20200310Lin X M, Wei Y H, Chen H, et al. The effect assessment of wind field inversion based on WPR in precipitation. J Appl Meteor Sci, 2020, 31(3): 361-372. doi: 10.11898/1001-7313.20200310 [5] 邓闯, 阮征, 魏鸣, 等. 风廓线雷达测风精度评估. 应用气象学报, 2012, 23(5): 523-533. doi: 10.3969/j.issn.1001-7313.2012.05.002Deng C, Ruan Z, Wei M, et al. The evaluation of wind measurement accuracy by wind profile radar. J Appl Meteor Sci, 2012, 23(5): 523-533. doi: 10.3969/j.issn.1001-7313.2012.05.002 [6] 高祝宇, 阮征, 魏鸣, 等. 风廓线雷达数据质量影响因子及处理算法. 应用气象学报, 2016, 27(2): 148-159. doi: 10.11898/1001-7313.20160203Gao Z Y, Ruan Z, Wei M, et al. Quality factors and processing algorithm for wind profiling radar data. J Appl Meteor Sci, 2016, 27(2): 148-159. doi: 10.11898/1001-7313.20160203 [7] 张旭斌, 万齐林, 薛纪善, 等. 风廓线雷达资料质量控制及其同化应用. 气象学报, 2015, 73(1): 159-176. https://www.cnki.com.cn/Article/CJFDTOTAL-QXXB201501012.htmZhang X B, Wan Q L, Xue J S, et al. Quality control of wind profile radar data and its application to assimilation. Acta Meteor Sinica, 2015, 73(1): 159-176. https://www.cnki.com.cn/Article/CJFDTOTAL-QXXB201501012.htm [8] 孙康远, 阮征, 魏鸣, 等. 风廓线雷达反演大气比湿廓线的初步试验. 应用气象学报, 2013, 24(4): 407-415. doi: 10.3969/j.issn.1001-7313.2013.04.003Sun K Y, Ruan Z, Wei M, et al. Preliminary estimation of specific humidity profiles with wind profile radar. J Appl Meteor Sci, 2013, 24(4): 407-415. doi: 10.3969/j.issn.1001-7313.2013.04.003 [9] 单楠, 何平, 吴蕾. 风廓线雷达反演温度平流的应用. 应用气象学报, 2016, 27(3): 323-333. doi: 10.11898/1001-7313.20160307Shan N, He P, Wu L. The application to temperature advection retrieval based on wind profile radar data. J Appl Meteor Sci, 2016, 27(3): 323-333. doi: 10.11898/1001-7313.20160307 [10] White A B, Gottas D J, Strem E T, et al. An automated brightband height detection algorithm for use with Doppler radar spectral moments. J Atmos Oceanic Technol, 2002, 19(5): 687-697. doi: 10.1175/1520-0426(2002)019<0687:AABHDA>2.0.CO;2 [11] Bianco L, Wilczak J M. Convective boundary layer depth: Improved measurements by Doppler radar wind profiler using fuzzy logic methods. J Atmos Oceanic Technol, 2002, 19(11): 1745-1758. doi: 10.1175/1520-0426(2002)019<1745:CBLDIM>2.0.CO;2 [12] Lerach D G, Rutledge S A, Williams C R, et al. Vertical structure of convective systems during NAME 2004. Mon Wea Rev, 2010, 138: 1695-1714. doi: 10.1175/2009MWR3053.1 [13] Williams C R, Gage K S, Ecklund W L. Classification of precipitating clouds in the tropics using 915-MHz wind profilers. J Atmos Oceanic Technol, 1995, 12(5): 996-1012. doi: 10.1175/1520-0426(1995)012<0996:COPCIT>2.0.CO;2 [14] Rao T N, Kirankumar N V P, Radhakrishna B, et al. Classification of tropical precipitating systems using wind profiler spectral moments. Part Ⅰ: Algorithm description and validation. J Atmos Oceanic Technol, 2008, 25(6): 884-897. doi: 10.1175/2007JTECHA1031.1 [15] 阮征, 何平, 葛润生. 风廓线雷达对大气折射率结构常数的探测研究. 大气科学, 2008, 32(1): 133-140. doi: 10.3878/j.issn.1006-9895.2008.01.12Ruan Z, He P, Ge R S. Determination of refractive index structure constant with wind profile radar data. Chinese Journal of Atmospheric Sciences, 2008, 32(1): 133-140. doi: 10.3878/j.issn.1006-9895.2008.01.12 [16] 阮征, 葛润生, 吴志根. 风廓线仪探测降水云体结构方法的研究. 应用气象学报, 2002, 13(3): 330-338. doi: 10.3969/j.issn.1001-7313.2002.03.008Ruan Z, Ge R S, Wu Z G. Method for detecting rain cloud structure with wind profilers. J Appl Meteor Sci, 2002, 13(3): 330-338. doi: 10.3969/j.issn.1001-7313.2002.03.008 [17] 何平, 朱小燕, 阮征, 等. 风廓线雷达探测降水过程的初步研究. 应用气象学报, 2009, 20(4): 465-470. doi: 10.3969/j.issn.1001-7313.2009.04.011He P, Zhu X Y, Ruan Z, et al. Preliminary study on precipitation process detection using wind profiler radar. J Appl Meteor Sci, 2009, 20(4): 465-470. doi: 10.3969/j.issn.1001-7313.2009.04.011 [18] 王晓蕾, 阮征, 葛润生, 等. 风廓线雷达探测降水云体中雨滴谱的试验研究. 高原气象, 2010, 29(2): 498-505. https://www.cnki.com.cn/Article/CJFDTOTAL-GYQX201002026.htmWang X L, Ruan Z, Ge R S, et al. A study of drop-size distribution in precipitation cloud from wind profile radar. Plateau Meteorology, 2010, 29(2): 498-505. https://www.cnki.com.cn/Article/CJFDTOTAL-GYQX201002026.htm [19] Lucas C, MacKinnon A D, Vincent R A, et al. Raindrop size distribution retrievals from a VHF Boundary Layer Profiler. J Atmos Oceanic Technol, 2004, 21(1): 45-60. doi: 10.1175/1520-0426(2004)021<0045:RSDRFA>2.0.CO;2 [20] 钟刘军, 阮征, 葛润生, 等. 风廓线雷达回波信号强度定标方法. 应用气象学报, 2010, 21(5): 598-605. doi: 10.3969/j.issn.1001-7313.2010.05.009Zhong L J, Ruan Z, Ge R S, et al. Calibration method of echo intensity of wind profile radar. J Appl Meteor Sci, 2010, 21(5): 598-605. doi: 10.3969/j.issn.1001-7313.2010.05.009 [21] 王莎, 阮征, 葛润生. 风廓线雷达探测大气返回信号谱的仿真模拟. 应用气象学报, 2012, 23(1): 20-29. doi: 10.3969/j.issn.1001-7313.2012.01.003Wang S, Ruan Z, Ge R S. Simulation of return signal spectrum of wind profile radar. J Appl Meteor Sci, 2012, 23(1): 20-29. doi: 10.3969/j.issn.1001-7313.2012.01.003 [22] 何平, 李柏, 吴蕾, 等. 确定风廓线雷达功率谱噪声功率方法. 应用气象学报, 2013, 24(3): 297-303. doi: 10.3969/j.issn.1001-7313.2013.03.005He P, Li B, Wu L, et al. The method to determine the noise power of wind profile radar. J Appl Meteor Sci, 2013, 24(3): 297-303. doi: 10.3969/j.issn.1001-7313.2013.03.005 [23] 马建立, 阮征, 葛润生, 等. 风廓线雷达估算大气返回信号功率方法研究. 气象科技, 2009, 37(1): 89-92. doi: 10.3969/j.issn.1671-6345.2009.01.017Ma J L, Ruan Z, Ge R S, et al. Estimation method of atmospheric return-signal power with wind profile radar data. Meteorological Science and Technology, 2009, 37(1): 89-92. doi: 10.3969/j.issn.1671-6345.2009.01.017 [24] May P T, Jameson A R, Keenan T D, et al. A Comparison between polarimetric radar and wind profiler observations of precipitation in tropical showers. J Appl Meteor, 2001, 40(10): 1702-1717. doi: 10.1175/1520-0450(2001)040<1702:ACBPRA>2.0.CO;2 [25] 胡明宝, 郑国光. 风廓线雷达谱宽计算方法的模拟试验研究. 现代雷达, 2010, 32(10): 37-41. doi: 10.3969/j.issn.1004-7859.2010.10.009Hu M B, Zheng G G. Simulation test of the computing method of wind profiler spectrum width. Modern Radar, 2010, 32(10): 37-41. doi: 10.3969/j.issn.1004-7859.2010.10.009 [26] Rajopadhyaya D K, May P T, Cifelli R C, et al. The effect of vertical air motions on rain rates and median volume diameter determined from combined UHF and VHF wind profiler measurements and comparisons with rain gauge measurements. J Atmos Oceanic Technol, 1998, 15(6): 1306-1319. doi: 10.1175/1520-0426(1998)015<1306:TEOVAM>2.0.CO;2 [27] Williams C R. Vertical air motion retrieved from dual-frequency profiler observations. J Atmos Oceanic Technol, 2012, 29(10): 1471-1480. doi: 10.1175/JTECH-D-11-00176.1 [28] Toru Sato, Hiroshi Doji, Hisato Iwai, et al. Computer processing for deriving drop-size distributions and vertical air velocities from VHF Doppler radar spectra. Radio Science, 1990, 25(5): 961-973. doi: 10.1029/RS025i005p00961