留言板

尊敬的读者、作者、审稿人, 关于本刊的投稿、审稿、编辑和出版的任何问题, 您可以本页添加留言。我们将尽快给您答复。谢谢您的支持!

姓名
邮箱
手机号码
标题
留言内容
验证码

雷暴云特征数据集及我国雷暴活动特征

马瑞阳 郑栋 姚雯 张文娟

马瑞阳, 郑栋, 姚雯, 等. 雷暴云特征数据集及我国雷暴活动特征. 应用气象学报, 2021, 32(3): 358-369.DOI:  10.11898/1001-7313.20210308..
引用本文: 马瑞阳, 郑栋, 姚雯, 等. 雷暴云特征数据集及我国雷暴活动特征. 应用气象学报, 2021, 32(3): 358-369.DOI:  10.11898/1001-7313.20210308.
Ma Ruiyang, Zheng Dong, Yao Wen, et al. Thunderstorm feature dataset and characteristics of thunderstorm activities in China. J Appl Meteor Sci, 2021, 32(3): 358-369.DOI:  10.11898/1001-7313.20210308.
Citation: Ma Ruiyang, Zheng Dong, Yao Wen, et al. Thunderstorm feature dataset and characteristics of thunderstorm activities in China. J Appl Meteor Sci, 2021, 32(3): 358-369.DOI:  10.11898/1001-7313.20210308.

雷暴云特征数据集及我国雷暴活动特征

DOI: 10.11898/1001-7313.20210308
资助项目: 

国家重点研发计划 2017YFC1501503

第二次青藏高原综合科学考察研究 2019QZKK0104

中国气象科学研究院基本科研业务费重点项目 2020Z009

详细信息
    通信作者:

    郑栋, 邮箱: zhengdong@cma.gov.cn

Thunderstorm Feature Dataset and Characteristics of Thunderstorm Activities in China

  • 摘要: 基于FY-2E气象卫星相当黑体亮度温度(TBB)和云分类数据(CLC)及全球闪电探测网(WWLLN)闪电数据,通过对TBB不超过-32℃的云区进行椭圆拟合,定义1 h内上述云区或椭圆区域有WWLLN闪电发生的个例为雷暴云,获得雷暴云时间、位置、形态、结构、闪电活动等特征参量,构建雷暴云特征数据集,并基于该数据集初步分析了我国陆地和毗邻海域的雷暴活动特征。研究表明:我国华南、西南、青藏高原东、中部和南海雷暴最为活跃,华北和东北地区是北方雷暴活动较强的区域。雷暴活动时间变化海陆差异明显,陆地雷暴活动峰值出现在6—8月,南海雷暴活动一个峰值出现在5月左右,另一峰值出现在8月后,且纬度越低出现越晚。陆地大部分地区雷暴活动在14:00—20:00(北京时)达到峰值,毗邻海域雷暴活动峰值主要出现在早上。雷暴云TBB不超过-32℃面积符合对数正态分布,峰值区间位于1×103~1×104 km2,平均值为3.0×104 km2。南海雷暴云面积最大,陆地上大于雷暴云面积平均值1.2×105 km2的区域主要分布于我国地形的第一阶梯和柴达木盆地。
  • 图  1  雷暴云区域识别示意图

    (红线包围区域为TBB不超过-32℃的区域,蓝线表示针对上述区域的拟合椭圆,黄色*为叠加的1 h内WWLLN闪电;红色和蓝色实线表示雷暴云,红色和蓝色虚线表示非雷暴云)

    Fig. 1  Schematic diagram of thunderstorm cloud area identification

    (red lines enclose the areas with TBB not higher than-32℃, blue lines represent the fitted ellipses for these areas, and the yellow * marks superimposed one-hour WWLLN lightning flash;red and blue solid lines represent thunderstorms, and red and blue dashed lines represent non-thunderstorms)

    图  2  2010—2018年不同闪电频次(F)和雷暴云面积(A)区间的样本量分布

    Fig. 2  Sample number in lightning frequency(F) and thunderstorm cloud area(A)

    图  3  2010—2018年雷暴小时数密度

    Fig. 3  Annual thunderstorm hour density during 2010-2018

    图  4  1961—2014年中国陆地年平均雷暴日数

    Fig. 4  Annual thunderstorm days in land area of China during 1961-2014

    图  5  2010—2018年30°~32°N范围内和112°~114°E范围内雷暴小时数的逐旬占比

    Fig. 5  Proportion of ten-day thunderstorm-hour along 30°-32°N and 112°-114°E during 2010-2018

    图  6  2010—2018年雷暴活动日变化峰值时间

    Fig. 6  Peak time of thunderstorm activity during 2010-2018

    图  7  2010—2018年30°~32°N范围内和12°~114°E范围内雷暴小时数的逐时占比

    Fig. 7  Proportion of thunderstorm-hour along 30°-32°N and 112°-114°E during 2010-2018

    图  8  2010—2018年5—9月研究区域内雷暴云面积(A)的概率和累积概率分布

    Fig. 8  Probability and cumulative probability distributions of thunderstorm cloud area(A) in the study area from May to Sep during 2010-2018

    图  9  2010—2018年5—9月研究区域内雷暴云平均扩展面积的空间分布

    Fig. 9  Average expansion area of thunderstorm clouds in the study area from May to Sep during 2010-2018

  • [1] Maddox R A.Mesoscale convective complexes.Bull Amer Meteor Soc,1980,61(11):1374-1400. doi:  10.1175/1520-0477(1980)061<1374:MCC>2.0.CO;2
    [2] 马禹, 王旭, 陶祖钰. 中国及其邻近地区中尺度对流系统的普查和时空分布特征. 自然科学进展, 1997, 7(6): 701-706. doi:  10.3321/j.issn:1002-008X.1997.06.010

    Ma Y, Wang X, Tao Z Y. Census and spatio-temporal distribution characteristics of mesoscale convective systems in China and its adjacent areas. Progress in Natural Science, 1997, 7(6): 701-706. doi:  10.3321/j.issn:1002-008X.1997.06.010
    [3] 郑永光, 陈炯, 朱佩君. 中国及周边地区夏季中尺度对流系统分布及其日变化特征. 科学通报, 2008, 53(4): 471-481. doi:  10.3321/j.issn:0023-074X.2008.04.015

    Zheng Y G, Chen J, Zhu P J. Distribution and diurnal variation of summer mesoscale convective system in China and its adjacent areas. Science Bulletin, 2008, 53(4): 471-481. doi:  10.3321/j.issn:0023-074X.2008.04.015
    [4] 祁秀香, 郑永光. 2007年夏季我国深对流活动时空分布特征. 应用气象学报, 2009, 20(3): 286-294. doi:  10.3969/j.issn.1001-7313.2009.03.004

    Qi X X, Zheng Y G. Distribution and spatiotemporal variations of deep convection over China and its vicinity during the summer of 2007. J Appl Meteor Sci, 2009, 20(3): 286-294. doi:  10.3969/j.issn.1001-7313.2009.03.004
    [5] 苏爱芳, 孙景兰, 谷秀杰, 等. 河南省对流性暴雨云系特征与概念模型. 应用气象学报, 2013, 24(2): 219-229. doi:  10.3969/j.issn.1001-7313.2013.02.010

    Su A F, Sun J L, Gu X J, et al. Characteristics and conceptual models of convective rainstorm clouds in Henan Province. J Appl Meteor Sci, 2013, 24(2): 219-229. doi:  10.3969/j.issn.1001-7313.2013.02.010
    [6] Yang X, Fei J, Huang X, et al. Characteristics of mesoscale convective systems over China and its vicinity using geostationary satellite FY2. J Climate, 2015, 28(12): 4890-4907. doi:  10.1175/JCLI-D-14-00491.1
    [7] Liu C, Zipser E J. Global distribution of convection penetrating the tropical tropopause. J Geophys Res, 2005, 110(23): 1-12. doi:  10.1029/2005JD006063/full
    [8] Houze R A, Wilton D C, Smull B F. Monsoon convection in the Himalayan region as seen by the TRMM Precipitation Radar. Quart J Roy Meteor Soc, 2007, 133: 1389-1411. http://ci.nii.ac.jp/naid/10025262410
    [9] Romatschke U, Medina S, Houze R A. Regional, seasonal, and diurnal variations of extreme convection in the South Asian region. J Climate, 2010, 23(2): 419-439. doi:  10.1175/2009JCLI3140.1
    [10] Wu X K, Qie X S, Yuan T. Regional distribution and diurnal variation of deep convective systems over the Asian monsoon region. Science China(Earth Sciences), 2013, 56(5): 843-854. doi:  10.1007/s11430-012-4551-8
    [11] Qie X, Wu X, Yuan T, et al. Comprehensive pattern of deep convective systems over the Tibetan Plateau-South Asian monsoon region based on TRMM data. J Climate, 2014, 27(17): 6612-6626. doi:  10.1175/JCLI-D-14-00076.1
    [12] 朱士超, 袁野, 吴月, 等. 江淮地区孤立对流云统计特征. 应用气象学报, 2019, 30(6): 690-699. doi:  10.11898/1001-7313.20190605

    Zhu S C, Yuan Y, Wu Y, et al. Statistical characteristics of isolated convection in the Jianghuai Region. J Appl Meteor Sci, 2019, 30(6): 690-699. doi:  10.11898/1001-7313.20190605
    [13] Mezuman K, Price C, Galanti E. On the spatial and temporal distribution of global thunderstorm cells. Environ Res Lett, 2014, 9(12). DOI: 10.1088/1748-9326/9/12/124023.
    [14] Hutchins M L, Holzworth R H, Brundell J B. Diurnal variation of the global electric circuit from clustered thunderstorms. J Geophys Res(Space Physics), 2014, 119(1): 620-629. doi:  10.1002/2013JA019593/full
    [15] 周康辉, 郑永光, 蓝渝. 基于闪电数据的雷暴识别、追踪与外推方法. 应用气象学报, 2016, 27(2): 173-181. doi:  10.11898/1001-7313.20160205

    Zhou K H, Zheng Y G, Lan Y. Flash cell identification, tracking and nowcasting with lightning data. J Appl Meteor Sci, 2016, 27(2): 173-181. doi:  10.11898/1001-7313.20160205
    [16] Liu C, Zipser E J, Cecil D J, et al. A cloud and precipitation feature database from nine years of TRMM observations. J Appl Meteor Climatol, 2008, 47(10): 2712-2728. doi:  10.1175/2008JAMC1890.1
    [17] Zipser E J, Cecil D J, Liu C, et al. Where are the most: Intense thunderstorms on Earth?. Bull Amer Meteor Soc, 2006, 87(8): 1057-1071. doi:  10.1175/BAMS-87-8-1057
    [18] Bang S D, Zipser E J. Differences in size spectra of electrified storms over land and ocean. Geophys Res Lett, 2015, 42: 6844-6851. doi:  10.1002/2015GL065264
    [19] Bang S D, Zipser E J. Seeking reasons for the differences in size spectra of electrified storms over land and ocean. J Geophys Res, 2016, 121(15): 9048-9068. doi:  10.1002/2016JD025150
    [20] 李进梁, 吴学珂, 袁铁, 等. 基于TRMM卫星多传感器资料揭示的亚洲季风区雷暴时空分布特征. 地球物理学报, 2019, 62(11): 4098-4109. doi:  10.6038/cjg2019M0687

    Li J L, Wu X K, Yuan T, et al. The temporal and spatial distribution of thunderstorms in Asia Monsoon region based on the TRMM multi-sensor database. Chinese J Geophys, 2019, 62(11): 4098-4109. doi:  10.6038/cjg2019M0687
    [21] Dowden R L, Brunde J B, Rodger C J. VLF lightning location by time of group arrival (TOGA) at multiple sites. J Atmos Solar-Terr Phys, 2002, 64(7): 817-830. doi:  10.1016/S1364-6826(02)00085-8
    [22] Dowden R L, Holzworth R H, Rodger C J, et al. World-wide lightning location using VLF propagation in the Earth-ionosphere waveguide. IEEE Antenn Propag M, 2008, 50(5): 40-60. doi:  10.1109/MAP.2008.4674710
    [23] Hutchins M L, Holzworth R H, Brundell J B, et al. Relative detection efficiency of the World Wide Lightning Location Network. Radio Sci, 2012, 47(6): 1-9. http://ieeexplore.ieee.org/document/7776718
    [24] Rudlosky S D, Shea D T. Evaluating WWLLN performance relative to TRMM/LIS. Geophys Res Lett, 2013, 40(10): 2344-2348. doi:  10.1002/grl.50428
    [25] Bürgesser R E. Assessment of the World Wide Lightning Location Network (WWLLN) detection efficiency by comparison to the Lightning Imaging Sensor (LIS). Quarty J Roy Meteor Soc, 2017, 143(708): 2809-2817. doi:  10.1002/qj.3129
    [26] Fan P, Zheng D, Zhang Y, et al. A Performance evaluation of the World Wide Lightning Location Network (WWLLN) over the Tibetan Plateau. J Atmos Ocean Technol, 2018, 35(4): 927-939. doi:  10.1175/JTECH-D-17-0144.1
    [27] Boccippio D J, Koshak W J, Blakeslee R J. Performance assessment of the optical transient detector and lightning imaging sensor. Part Ⅰ: Predicted diurnal variability. J Atmos Ocean Technol, 2002, 19(9): 1318-1332. doi:  10.1175/1520-0426(2002)019<1318:PAOTOT>2.0.CO;2
    [28] 费增坪, 王洪庆, 郑永光, 等. 基于静止卫星红外云图的MCS普查研究进展及标准修订. 应用气象学报, 2008, 19(1): 82-90. doi:  10.3969/j.issn.1001-7313.2008.01.011

    Fei Z P, Wang H Q, Zheng Y G, et al. MCS census and modification of MCS definition based on geostationary satellite infrared imagery. J Appl Meteor Sci, 2008, 19(1): 82-90. doi:  10.3969/j.issn.1001-7313.2008.01.011
    [29] 曹治强, 王新. 与强对流相联系的云系特征和天气背景. 应用气象学报, 2013, 24(3): 365-372. doi:  10.3969/j.issn.1001-7313.2013.03.013

    Cao Z Q, Wang X. Cloud characteristics and synoptic background associated with severe convective storms. J Appl Meteor Sci, 2013, 24(3): 365-372. doi:  10.3969/j.issn.1001-7313.2013.03.013
    [30] 王新, 郭强, 陈怡羽. FY-2E资料空间响应订正及对强对流监测改进. 应用气象学报, 2016, 27(1): 102-111. doi:  10.11898/1001-7313.20160111

    Wang X, Guo Q, Chen Y Y. Performance improvement for FY-2E convection monitoring using a spatial-response matched filter method. J Appl Meteor Sci, 201627(1): 102-111. doi:  10.11898/1001-7313.20160111
    [31] 冯晋勤, 刘铭, 蔡菁. 闽西山区"7·22"极端降水过程中尺度对流特征. 应用气象学报, 2018, 29(6): 748-758. doi:  10.11898/1001-7313.20180610

    Feng J Q, Liu M, Cai J. Meso-scale convective characteristics of "7·22" extreme rain in the west mountainous area of Fujian. J Appl Meteor Sci, 2018, 29(6): 748-758. doi:  10.11898/1001-7313.20180610
    [32] Thiel K C, Calhoun K M, Reinhart A E, et al. GLM and ABI characteristics of severe and convective storms. J Geophys Res Atmos, 2020, 125(17): 1-22. doi:  10.1029/2020JD032858
    [33] 金霞. 四川盆地降水日变化特征分析及成因研究. 北京: 中国气象科学研究院, 2013.

    Jin X, Study of Diurnal Cycle of Precipitation over the Sichuan Basin: Characteristics and its Causes. Beijing: Chinese Academy of Meteorological Sciences, 2013.
    [34] 王黉, 李英, 宋丽莉, 等. 川藏地区雷暴大风活动特征和环境因子对比. 应用气象学报, 2020, 31(4): 435-446. doi:  10.11898/1001-7313.20200406

    Wang H, Li Y, Song L L, et al. Comparison of characteristics and environmental factors of thunderstorm gales over the Sichuan-Tibet Region. J Appl Meteor Sci, 2020, 31(4): 435-446. doi:  10.11898/1001-7313.20200406
  • 加载中
图(9)
计量
  • 摘要浏览量:  2001
  • HTML全文浏览量:  254
  • PDF下载量:  270
  • 被引次数: 0
出版历程
  • 收稿日期:  2021-01-12
  • 修回日期:  2021-03-12
  • 刊出日期:  2021-05-31

目录

    /

    返回文章
    返回