[1]
|
Browning K A,Foote G B.Airflow and hail growth in supercell storms and some implications for hail suppression.Quart J Roy Meteor Soc,1976,102:499-533. doi: 10.1002/qj.49710243303
|
[2]
|
王昂生, 徐乃璋. 强单体雹暴的研究. 大气科学, 1985, 9(3): 260-267. doi: 10.3878/j.issn.1006-9895.1985.03.06Wang A S, Xu N Z. The studies of strongcell hailstorms. Sci Atmos Sinica, 1985, 9(3): 260-267. doi: 10.3878/j.issn.1006-9895.1985.03.06
|
[3]
|
张鸿发, 龚乃虎, 贾伟, 等. 平凉地区强对流钩状回波特征的观测研究. 大气科学, 1997, 21(4): 401-412. doi: 10.3878/j.issn.1006-9895.1997.04.03Zhang H F, Gong N H, Jia W, et al. Observational investigation of characteristics of severe convective hook echo in Pingliang Region. Sci Atmos Sinica, 1997, 21(4): 401-412. doi: 10.3878/j.issn.1006-9895.1997.04.03
|
[4]
|
郭欣, 郭学良, 陈宝君, 等. 一次大冰雹形成机制的数值模拟. 应用气象学报, 2019, 30(6): 651-664. doi: 10.11898/1001-7313.20190602Guo X, Guo X L, Chen B J, et al. Numerical simulation on the formation of large-size hailstones. J Appl Meteor Sci, 2019, 30(6): 651-664. doi: 10.11898/1001-7313.20190602
|
[5]
|
朱士超, 袁野, 吴月, 等. 江淮地区孤立对流云统计特征. 应用气象学报, 2019, 30(6): 690-699. doi: 10.11898/1001-7313.20190605Zhu S C, Yuan Y, Wu Y, et al. Statistical characteristics of isolated convection in the Jianghuai Region. J Appl Meteor Sci, 2019, 30(6): 690-699. doi: 10.11898/1001-7313.20190605
|
[6]
|
傅佩玲, 胡东明, 黄浩, 等. 台风山竹(1822)龙卷的双极化相控阵雷达特征. 应用气象学报, 2020, 31(6): 706-718. https://www.cnki.com.cn/Article/CJFDTOTAL-YYQX202006006.htmFu P L, Hu D M, Huang H, et al. Observation of a tornado event in outside-region of Typhoon Mangkhut by X-band polarimetric phased array radar in 2018. J Appl Meteor Sci, 2020, 31(6): 706-718. https://www.cnki.com.cn/Article/CJFDTOTAL-YYQX202006006.htm
|
[7]
|
Browning K A. The structure and mechanisms of hailstorms. Meteor Monogr, 1977, 16(38): 1-36. doi: 10.1007/978-1-935704-30-0_1
|
[8]
|
郑媛媛, 俞小鼎, 方翀, 等. 一次典型超级单体风暴的多普勒天气雷达观测分析. 气象学报, 2004, 62(3): 317-328. doi: 10.3321/j.issn:0577-6619.2004.03.006Zheng Y Y, Yu X D, Fang C, et al. Analysis of a strong classic supercell storm with Doppler weather radar data. Acta Meteor Sinica, 2004, 62(3): 317-328. doi: 10.3321/j.issn:0577-6619.2004.03.006
|
[9]
|
俞小鼎, 郑媛媛, 廖玉芳, 等. 一次伴随强烈龙卷的强降水超级单体风暴研究. 大气科学, 2008, 32(3): 508-522. doi: 10.3878/j.issn.1006-9895.2008.03.08Yu X D, Zheng Y Y, Liao Y F, et al. Observational investigation of a tornadic heavy precipitation supercell storm. Chin J Atmos Sci, 2008, 32(3): 508-522. doi: 10.3878/j.issn.1006-9895.2008.03.08
|
[10]
|
高晓梅, 俞小鼎, 王令军, 等. 山东半岛两次海风锋引起的强对流天气对比. 应用气象学报, 2018, 29(2): 245-256. doi: 10.11898/1001-7313.20180210Gao X M, Yu X D, Wang L J, et al. Comparative analysis of two strong convections triggered by sea-breeze front in Shandong Peninsula. J Appl Meteor Sci, 2018, 29(2): 245-256. doi: 10.11898/1001-7313.20180210
|
[11]
|
Seliga T A, Bringi V N. Potential use of radar differential reflectivity measurements at orthogonal polarizations for measuring precipitation. J Appl Meteor, 1976, 15(1): 69-76. doi: 10.1175/1520-0450(1976)015<0069:PUORDR>2.0.CO;2
|
[12]
|
刘黎平, 钱永甫, 王致君. 用双线偏振雷达研究云内粒子相态及尺度的空间分布. 气象学报, 1996, 54(5): 590-599. doi: 10.3321/j.issn:0577-6619.1996.05.008Liu L P, Qian Y F, Wang Z J. The study of spacial distribution of phase and size of hydrometeors in cloud by dual linear polarization radar. Acta Meteor Sinica, 1996, 54(5): 590-599. doi: 10.3321/j.issn:0577-6619.1996.05.008
|
[13]
|
Kumjian M R, Ryzhkov A V. Polarimetric signatures in supercell thunderstorms. J Appl Meteor Climatol, 2008, 47(7): 1940-1961. doi: 10.1175/2007JAMC1874.1
|
[14]
|
王洪, 吴乃庚, 万齐林, 等. 一次华南超级单体风暴的S波段偏振雷达观测分析. 气象学报, 2018, 76(1): 92-103. https://www.cnki.com.cn/Article/CJFDTOTAL-QXXB201801007.htmWang H, Wu N G, Wan Q L, et al. Analysis of S-band polar metric radar observations of a hail-producing supercell. Acta Meteor Sinica, 2018, 76(1): 92-103. https://www.cnki.com.cn/Article/CJFDTOTAL-QXXB201801007.htm
|
[15]
|
潘佳文, 蒋璐璐, 魏鸣, 等. 一次强降水超级单体的双偏振雷达观测分析. 气象学报, 2020, 78(1): 86-100. https://www.cnki.com.cn/Article/CJFDTOTAL-QXXB202001007.htmPan J W, Jiang L L, Wei M, et al. Analysis of a high precipitation supercell based on dual polarization radar observations. Acta Meteor Sinica, 2020, 78(1): 86-100. https://www.cnki.com.cn/Article/CJFDTOTAL-QXXB202001007.htm
|
[16]
|
Straka J M, Mansell E R. A bulk microphysics parameterization with multiple ice precipitation categories. J Appl Meteor, 2005, 44(4): 445-466. doi: 10.1175/JAM2211.1
|
[17]
|
Park H S, Ryzhkov A V, Zrnic D S, et al. The hydrometeor classification algorithm for the polarimetric WSR-88D: Description and application to an MCS. Wea Forecasting, 2009, 24(3): 730-748. doi: 10.1175/2008WAF2222205.1
|
[18]
|
Wu C, Liu L P, Wei M, et al. Statistics-based optimization of the polarimetric radar hydrometeor classification algorithm and its application for a squall line in South China. Adv Atmos Sci, 2018, 35(3): 296-316. doi: 10.1007/s00376-017-6241-0
|
[19]
|
徐舒扬, 吴翀, 刘黎平. 双偏振雷达水凝物相态识别算法的参数改进. 应用气象学报, 2020, 31(3): 350-360. doi: 10.11898/1001-7313.20200309Xu S Y, Wu C, Liu L P. Parameter improvements of hydrometeor classification algorithm for the dual-polarimetric radar. J Appl Meteor Sci, 2020, 31(3): 350-360. doi: 10.11898/1001-7313.20200309
|
[20]
|
苏德斌, 马建立, 张蔷, 等. X波段双线偏振雷达冰雹识别初步研究. 气象, 2011, 37(10): 1228-1232. doi: 10.7519/j.issn.1000-0526.2011.10.005Su D B, Ma J L, Zhang Q, et al. Preliminary research on method of hail detection with X band dual linear polarization radar. Meteor Mon, 2011, 37(10): 1228-1232. doi: 10.7519/j.issn.1000-0526.2011.10.005
|
[21]
|
苏冉, 廖菲, 周芯玉. 双线偏振雷达在广州"3.19"降雹过程中的应用分析. 热带气象学报, 2018, 34(2): 209-216. https://www.cnki.com.cn/Article/CJFDTOTAL-RDQX201802007.htmSu R, Liao F, Zhou Q Y, et al. Research on Guangzhou "3.19" hail event based on observation by dual-polarization weather radar. J Trop Meteor, 2018, 34(2): 209-216. https://www.cnki.com.cn/Article/CJFDTOTAL-RDQX201802007.htm
|
[22]
|
冯晋勤, 张深寿, 吴陈锋, 等. 双偏振雷达产品在福建强对流天过程中的应用分析. 气象, 2018, 44(12): 1565-1574. doi: 10.7519/j.issn.10000526.2018.12.006Feng J Q, Zhang S S, Wu C F, et al. Application of dual polarization weather radar products to severe convective weather in Fujian. Meteor Mon, 2018, 44(12): 1565-1574. doi: 10.7519/j.issn.10000526.2018.12.006
|
[23]
|
Loffler-Mang M, Joss J. An optical disdrometer for measuring size and velocity of hydrometeors. J Atmos Oceanic Technol, 2000, 17(2): 130-139. doi: 10.1175/1520-0426(2000)017<0130:AODFMS>2.0.CO;2
|
[24]
|
Kruger A, Krajewski W F. Two-dimensional video disdrometer: A description. J Atmos Oceanic Technol, 2002, 19(5): 602-617. doi: 10.1175/1520-0426(2002)019<0602:TDVDAD>2.0.CO;2
|
[25]
|
Tokay A, Wolff D B, Petersen W A. Evaluationof the new version of the laser-optical disdrometer, OTT Parsivel 2. J Atmos Oceanic Technol, 2014, 31(6): 1276-1288. doi: 10.1175/JTECH-D-13-00174.1
|
[26]
|
Atlas D, Ulbrich C W. An observationally based conceptual model of warm oceanic convective rain in the tropics. J Climate Appl Meteor, 2000, 39(12): 2165-2181. doi: 10.1175/1520-0450(2001)040<2165:AOBCMO>2.0.CO;2
|
[27]
|
Ulbrich C W, Atlas D. Microphysics of raindrop size spectra: Tropical continental and maritime storms. J Appl Meteorol Climatol, 2007, 46(11): 1777-1791. doi: 10.1175/2007JAMC1649.1
|
[28]
|
Schuur T J, Ryzhkov A V, Zrnić D S, et al. Drop size distributions measured by a 2D video disdrometer: Comparison with dual-polarization radar data. J Appl Meteor, 2001, 40(6): 1019-1034. doi: 10.1175/1520-0450(2001)040<1019:DSDMBA>2.0.CO;2
|
[29]
|
Friedrich K, Kalina E A, Masters F J, et al. Drop-size distributions in thunderstorms measured by optical disdrometers during VORTEX2. Mon Wea Rev, 2013, 141(4): 1182-1203. doi: 10.1175/MWR-D-12-00116.1
|
[30]
|
岳治国, 梁谷. 陕西渭北一次降雹过程的粒子谱特征分析. 高原气象, 2018, 37(6): 1716-1724. https://www.cnki.com.cn/Article/CJFDTOTAL-GYQX201806022.htmYue Z G, Liang G. Characteristics of precipitation particles in a hailstorm process in Weibei area of Shaanxi Province. Plateau Meteor, 2018, 37(6): 1716-1724. https://www.cnki.com.cn/Article/CJFDTOTAL-GYQX201806022.htm
|
[31]
|
陶涛, 张立新, 桑建人, 等. 六盘山区一次非典型冰雹天气过程微物理量特征的分析. 干旱区地理, 2020, 43(2): 299-307. https://www.cnki.com.cn/Article/CJFDTOTAL-GHDL202002003.htmTao T, Zhang L X, Sang J R, et al. A case analysis of microphysical characteristics of atypical hail formation over Liupan Mountain, China. Arid Land and Geography, 2020, 43(2): 299-307. https://www.cnki.com.cn/Article/CJFDTOTAL-GHDL202002003.htm
|
[32]
|
Schmid W, Schiesser H H, Waldvogel A. The kinetic energy of hailfalls. Part Ⅳ: Patterns of hailpad and radar data. J Appl Metor, 1992, 31(10): 1165-1178. doi: 10.1175/1520-0450(1992)031<1165:TKEOHP>2.0.CO;2
|
[33]
|
牛生杰, 马磊, 翟涛. 冰雹谱分布及Ze-E关系的初步分析. 气象学报, 1999, 57(2): 217-225. https://www.cnki.com.cn/Article/CJFDTOTAL-QXXB902.009.htmNiu S J, Ma L, Zhai T. Preliminary analysis of the hailstone spectra distribution and the relations between Ze and E. Acta Meteor Sinica, 1999, 57(2): 217-225. https://www.cnki.com.cn/Article/CJFDTOTAL-QXXB902.009.htm
|
[34]
|
郭学良, 方春刚, 卢广献, 等. 2008-2018年我国人工影响天气技术及应用进展. 应用气象学报, 2019, 30(6): 641-650. doi: 10.11898/1001-7313.20190601Guo X L, Fang C G, Lu G X, et al. Progresses of weather modification technologies and applications in China from 2008 to 2018. J Appl Meteor Sci, 2019, 30(6): 641-650. doi: 10.11898/1001-7313.20190601
|
[35]
|
刘泽, 郭凤霞, 郑栋, 等. 一次暖云强降水主导的对流单体闪电活动特征. 应用气象学报, 2020, 31(2): 185-196. doi: 10.11898/1001-7313.20200206Liu Z, Guo F X, Zheng D, et al. Lightning activities in a convection cell dominated by heavy warm cloud precipitation. J Appl Meteor Sci, 2020, 31(2): 185-196. doi: 10.11898/1001-7313.20200206
|
[36]
|
蒋银丰, 寇蕾蕾, 陈爱军, 等. 双偏振雷达和双频测雨雷达反射率因子对比. 应用气象学报, 2020, 31(5): 608-619. doi: 10.11898/1001-7313.20200508Jiang Y F, Kou L L, Chen A J, et al. Comparison of reflectivity factor of dual polarization radar and dual-frequency precipitation radar. J Appl Meteor Sci, 2020, 31(5): 608-619. doi: 10.11898/1001-7313.20200508
|
[37]
|
Yuter S E, Kingsmill D E, Nance L B, et al. Observations of precipitation size and fall velocity characteristics within coexisting rain and wet snow. J Appl Meteor Climatol, 2006, 45(10): 1450-1464. doi: 10.1175/JAM2406.1
|
[38]
|
Battaglia A, Rustemeier E, Tokay A, et al. PARSIVEL snow observations: A critical assessment. J Atmos Oceanic Technol, 2010, 27(3): 333-344.
|
[39]
|
袁野, 朱士超, 李爱华. 黄山雨滴下落过程滴谱变化特征. 应用气象学报, 2016, 27(6): 734-740. doi: 10.11898/1001-7313.20160610Yuan Y, Zhu S C, Li A H. Characteristics of raindrop falling process at the Mount Huang. J Appl Meteor Sci, 2016, 27(6): 734-740. doi: 10.11898/1001-7313.20160610
|
[40]
|
宋灿, 周毓荃, 吴志会. 雨滴谱垂直演变特征的微雨雷达观测研究. 应用气象学报, 2019, 30(4): 479-490. doi: 10.11898/1001-7313.20190408Song C, Zhou Y Q, Wu Z H. Vertical profiles of raindrop size distribution observed by micro rain radar. J Appl Meteor Sci, 2019, 30(4): 479-490. doi: 10.11898/1001-7313.20190408
|
[41]
|
梅海霞, 梁信忠, 曾明剑, 等. 2015-2017年夏季南京雨滴谱特征. 应用气象学报, 2020, 31(1): 117-128. doi: 10.11898/1001-7313.20200111Mei H X, Liang X Z, Zeng M J, et al. Raindrop size distribution characteristics of Nanjing in summer of 2015-2017. J Appl Meteor Sci, 2020, 31(1): 117-128. doi: 10.11898/1001-7313.20200111
|
[42]
|
Friedrich K, Higgins S, Masters F J, et al. Articulating and stationary PARSIVEL disdrometer measurements in conditions with strong winds and heavy rainfall. J Atmos Ocean Technol, 2013, 30(9): 2063-2080. doi: 10.1175/JTECH-D-12-00254.1
|
[43]
|
Ulbrich C W. Natural variations in the analytical form of the raindrop size distribution. J Appl Meteor, 1983, 22(10): 1764-1775. doi: 10.1175/1520-0450(1983)022<1764:NVITAF>2.0.CO;2
|
[44]
|
Tokay A, Short D A. Evidence from tropical raindrop spectra of the origin of rain from stratiform versus convective clouds. J Appl Meteorol, 1996, 35(3): 355-371. doi: 10.1175/1520-0450(1996)035<0355:EFTRSO>2.0.CO;2
|
[45]
|
Caracciolo C, Prodi F, Battaglia A. Analysis of the moments and parameters of a gamma DSD to infer precipitation properties: A convective stratiform discrimination algorithm. Atmos Res, 2006, 80(2/3): 165-186. http://www.sciencedirect.com/science/article/pii/S0169809505002097
|
[46]
|
Ulbrich C W, Atlas D. Rainfall microphysics and radar properties: Analysis methods for drop size spectra. J Climate Appl Meteor, 1998, 37(9): 912-923. doi: 10.1175/1520-0450(1998)037<0912:RMARPA>2.0.CO;2
|
[47]
|
Jaffrain J, Berne A. Experimental quantification of the sampling uncertainty associated with measurements from PARSIVEL disdrometers. J Hydrometeor, 2011, 12(3): 352-370. doi: 10.1175/2010JHM1244.1
|
[48]
|
Beard K V. Terminal velocity adjustment for cloud and precipitation drops aloft. J Atmos Sci, 1977, 34(8): 1293-1298. doi: 10.1175/1520-0469(1977)034<1293:TVAFCA>2.0.CO;2
|
[49]
|
Tokay A, Petersen W A, Gatlin P, et al. Comparison of raindrop size distribution measurements by collocated disdrometers. J Atmos Oceanic Technol, 2013, 30(8): 1672-1690. doi: 10.1175/JTECH-D-12-00163.1
|
[50]
|
Atlas D, Srivastava R C, Sekhon R S. Doppler radar characteristics of precipitation at vertical incidence. Rev Geophys, 1973, 11(1): 1-35. doi: 10.1029/RG011i001p00001
|
[51]
|
Locatelli J D, Hobbs P V. Fall speeds and masses of solid precipitation particles. J Geophys Res, 1974, 79(15): 2185-2197. doi: 10.1029/JC079i015p02185
|
[52]
|
Knight N C, Heymsfield A J. Measurement and interpretation of hailstone density and terminal velocity. J Atmos Sci, 1983, 40(6): 1510-1516. doi: 10.1175/1520-0469(1983)040<1510:MAIOHD>2.0.CO;2
|
[53]
|
Ryzhkov A V, Kumjian M R, Ganson S M, et al. Polarimetric radar characteristics of melting hail. Part Ⅰ: Theoretical simulations using spectral microphysical modeling. J Appl Meteor Climatol, 2013, 52(12): 2849-2870. doi: 10.1175/JAMC-D-13-073.1
|
[54]
|
Gatlin P N, Thurai M, Bringi V N, et al. Searching for large raindrops: A global summary of two-dimensional video disdrometer observations. J Appl Meteor Climatol, 2015, 54(5): 1069-1089. doi: 10.1175/JAMC-D-14-0089.1
|
[55]
|
Hu Z, Srivastava R C. Evolution of raindrop size distribution by coalescence, breakup, and evaporation: Theory and observation. J Atmos Sci, 1995, 52(10): 1761-1783. doi: 10.1175/1520-0469(1995)052<1761:EORSDB>2.0.CO;2
|
[56]
|
Rosenfeld D, Ulbrich C W. Cloud Microphysical Properties, Processes, and Rainfall Estimation Opportunities//Radar and Atmospheric Science: A Collection of Essays in Honor of David Atlas. Amer Meteor Soc, 2003: 237-258.
|
[57]
|
Fulton R A, Breidenbach J P, Seo D J, et al. The WSR-88D rainfall algorithm. Wea Forecasting, 1998, 13(2): 377-395. doi: 10.1175/1520-0434(1998)013<0377:TWRA>2.0.CO;2
|
[58]
|
Atlas D, Ulbrich C W. An observationally based conceptual model of warm oceanic convective rain in the Tropics. J Appl Meteor, 2000, 39(12): 2165-2181. doi: 10.1175/1520-0450(2001)040<2165:AOBCMO>2.0.CO;2
|
[59]
|
Uijlenhoet R, Smith J A, Steiner M. The microphysical structure of extreme precipitation as inferred from ground-based raindrop spectra. J Atmos Sci, 2003, 60(10): 1220-1238. doi: 10.1175/1520-0469(2003)60<1220:TMSOEP>2.0.CO;2
|