留言板

尊敬的读者、作者、审稿人, 关于本刊的投稿、审稿、编辑和出版的任何问题, 您可以本页添加留言。我们将尽快给您答复。谢谢您的支持!

姓名
邮箱
手机号码
标题
留言内容
验证码

山东北部一次夏末雹暴地面降水粒子谱特征

王俊 王文青 王洪 张秋晨 龚佃利 杨学斌

王俊, 王文青, 王洪, 等. 山东北部一次夏末雹暴地面降水粒子谱特征. 应用气象学报, 2021, 32(3): 370-384. DOI:  10.11898/1001-7313.20210309..
引用本文: 王俊, 王文青, 王洪, 等. 山东北部一次夏末雹暴地面降水粒子谱特征. 应用气象学报, 2021, 32(3): 370-384. DOI:  10.11898/1001-7313.20210309.
Wang Jun, Wang Wenqing, Wang Hong, et al. Hydrometeor particle characteristics during a late summer hailstorm in northern Shandong. J Appl Meteor Sci, 2021, 32(3): 370-384. DOI:  10.11898/1001-7313.20210309.
Citation: Wang Jun, Wang Wenqing, Wang Hong, et al. Hydrometeor particle characteristics during a late summer hailstorm in northern Shandong. J Appl Meteor Sci, 2021, 32(3): 370-384. DOI:  10.11898/1001-7313.20210309.

山东北部一次夏末雹暴地面降水粒子谱特征

DOI: 10.11898/1001-7313.20210309
资助项目: 

国家重点研发计划 2018YFC1507903

国家自然科学基金项目 41275044

山东省气象局课题 2012SDQX12

山东省气象局课题 2015SDQX02

详细信息
    通信作者:

    王俊, 邮箱: wangjun818@sohu.com

Hydrometeor Particle Characteristics During a Late Summer Hailstorm in Northern Shandong

  • 摘要: 为了更好地认识雹暴等强对流降水的微物理特征,利用降水现象仪观测资料和CINRAD/SA-D双偏振天气雷达的粒子相态识别和反射率因子等产品,分析2019年8月16日出现在山东北部的一次雹暴降水的雨、冰粒子谱(包括直径2~5 mm的霰粒子和直径大于5 mm的冰雹)的识别以及雨滴谱的演变特征,结果显示:济南双偏振天气雷达0.5°仰角PPI上在德州和陵县观测点附近识别的粒子主要为雨滴,临邑为冰雹加大雨;安装在3个观测点的降水现象仪均识别出少量冰粒子,3个观测点的冰粒子谱数密度低、分布不连续。雹暴降水开始阶段,出现少量大雨滴,这是风的筛选和蒸发作用导致的雨滴谱,具有低的小粒子数密度和较多大雨滴;雹暴强降水增大阶段,雨滴谱特征是小雨滴数密度偏低、大雨滴较多,即总的雨滴浓度低、雷达反射率因子高;雨强减弱阶段,小雨滴数密度显著增大、大雨滴数密度偏少,即总的雨滴浓度显著增大,但雷达反射率因子偏低。
  • 图  1  2019年8月16日济南双偏振雷达0.5°仰角PPI反射率因子及沿06:49图中AB的剖面

    Fig. 1  Jinan dual-polarization radar products of the hailstorm reflectivity factor at 0.5° elevation on 16 Aug 2019 and profile along the line of AB at 0649 BT

    图  2  2019年8月16日德州、陵县和临邑1 min雨滴(黑色线)、霰粒子(蓝色线)和冰雹(红色线) 分布

    Fig. 2  Particle classification scheme based on typical diameter ranges and fall velocity-diameter relationships for rain (black line), graupel (blue line) and hail (red line) in Dezhou, Lingxian and Linyi on 16 Aug 2019

    图  3  德州、陵县和临邑观测点总的冰雹谱分布

    Fig. 3  The total hail spectrum distribution at Dezhou, Lingxian and Linyi

    图  4  2019年8月16日德州、陵县和临邑观测点雨滴谱参数演变

    Fig. 4  Temporal evolutions of the raindrop size distribution and integral variables measured at Dezhou, Lingxian and Linyi during the passage of the hailstorm on 16 Aug 2019

    图  5  2019年8月16日德州、陵县和临邑降水分钟雨滴谱

    Fig. 5  The precipitation particles spectra at Dezhou, Lingxian and Linyi on 16 Aug 2019

    图  6  2019年8月16日德州、陵县和临邑不同阶段的平均雨滴谱和Gamma函数拟合

    Fig. 6  Average raindrop spectra at Dezhou, Lingxian and Linyi on 16 Aug 2019 with Gamma function fitting

    图  7  2019年8月16日德州、陵县和临邑观测点雷达反射率因子Z与雨强R大于5 mm·h-1降水的散点图

    Fig. 7  Scatter plot of the Z-R values with R> 5 mm·h-1 on 16 Aug 2019

  • [1] Browning K A,Foote G B.Airflow and hail growth in supercell storms and some implications for hail suppression.Quart J Roy Meteor Soc,1976,102:499-533. doi:  10.1002/qj.49710243303
    [2] 王昂生, 徐乃璋. 强单体雹暴的研究. 大气科学, 1985, 9(3): 260-267. doi:  10.3878/j.issn.1006-9895.1985.03.06

    Wang A S, Xu N Z. The studies of strongcell hailstorms. Sci Atmos Sinica, 1985, 9(3): 260-267. doi:  10.3878/j.issn.1006-9895.1985.03.06
    [3] 张鸿发, 龚乃虎, 贾伟, 等. 平凉地区强对流钩状回波特征的观测研究. 大气科学, 1997, 21(4): 401-412. doi:  10.3878/j.issn.1006-9895.1997.04.03

    Zhang H F, Gong N H, Jia W, et al. Observational investigation of characteristics of severe convective hook echo in Pingliang Region. Sci Atmos Sinica, 1997, 21(4): 401-412. doi:  10.3878/j.issn.1006-9895.1997.04.03
    [4] 郭欣, 郭学良, 陈宝君, 等. 一次大冰雹形成机制的数值模拟. 应用气象学报, 2019, 30(6): 651-664. doi:  10.11898/1001-7313.20190602

    Guo X, Guo X L, Chen B J, et al. Numerical simulation on the formation of large-size hailstones. J Appl Meteor Sci, 2019, 30(6): 651-664. doi:  10.11898/1001-7313.20190602
    [5] 朱士超, 袁野, 吴月, 等. 江淮地区孤立对流云统计特征. 应用气象学报, 2019, 30(6): 690-699. doi:  10.11898/1001-7313.20190605

    Zhu S C, Yuan Y, Wu Y, et al. Statistical characteristics of isolated convection in the Jianghuai Region. J Appl Meteor Sci, 2019, 30(6): 690-699. doi:  10.11898/1001-7313.20190605
    [6] 傅佩玲, 胡东明, 黄浩, 等. 台风山竹(1822)龙卷的双极化相控阵雷达特征. 应用气象学报, 2020, 31(6): 706-718. https://www.cnki.com.cn/Article/CJFDTOTAL-YYQX202006006.htm

    Fu P L, Hu D M, Huang H, et al. Observation of a tornado event in outside-region of Typhoon Mangkhut by X-band polarimetric phased array radar in 2018. J Appl Meteor Sci, 2020, 31(6): 706-718. https://www.cnki.com.cn/Article/CJFDTOTAL-YYQX202006006.htm
    [7] Browning K A. The structure and mechanisms of hailstorms. Meteor Monogr, 1977, 16(38): 1-36. doi:  10.1007/978-1-935704-30-0_1
    [8] 郑媛媛, 俞小鼎, 方翀, 等. 一次典型超级单体风暴的多普勒天气雷达观测分析. 气象学报, 2004, 62(3): 317-328. doi:  10.3321/j.issn:0577-6619.2004.03.006

    Zheng Y Y, Yu X D, Fang C, et al. Analysis of a strong classic supercell storm with Doppler weather radar data. Acta Meteor Sinica, 2004, 62(3): 317-328. doi:  10.3321/j.issn:0577-6619.2004.03.006
    [9] 俞小鼎, 郑媛媛, 廖玉芳, 等. 一次伴随强烈龙卷的强降水超级单体风暴研究. 大气科学, 2008, 32(3): 508-522. doi:  10.3878/j.issn.1006-9895.2008.03.08

    Yu X D, Zheng Y Y, Liao Y F, et al. Observational investigation of a tornadic heavy precipitation supercell storm. Chin J Atmos Sci, 2008, 32(3): 508-522. doi:  10.3878/j.issn.1006-9895.2008.03.08
    [10] 高晓梅, 俞小鼎, 王令军, 等. 山东半岛两次海风锋引起的强对流天气对比. 应用气象学报, 2018, 29(2): 245-256. doi:  10.11898/1001-7313.20180210

    Gao X M, Yu X D, Wang L J, et al. Comparative analysis of two strong convections triggered by sea-breeze front in Shandong Peninsula. J Appl Meteor Sci, 2018, 29(2): 245-256. doi:  10.11898/1001-7313.20180210
    [11] Seliga T A, Bringi V N. Potential use of radar differential reflectivity measurements at orthogonal polarizations for measuring precipitation. J Appl Meteor, 1976, 15(1): 69-76. doi:  10.1175/1520-0450(1976)015<0069:PUORDR>2.0.CO;2
    [12] 刘黎平, 钱永甫, 王致君. 用双线偏振雷达研究云内粒子相态及尺度的空间分布. 气象学报, 1996, 54(5): 590-599. doi:  10.3321/j.issn:0577-6619.1996.05.008

    Liu L P, Qian Y F, Wang Z J. The study of spacial distribution of phase and size of hydrometeors in cloud by dual linear polarization radar. Acta Meteor Sinica, 1996, 54(5): 590-599. doi:  10.3321/j.issn:0577-6619.1996.05.008
    [13] Kumjian M R, Ryzhkov A V. Polarimetric signatures in supercell thunderstorms. J Appl Meteor Climatol, 2008, 47(7): 1940-1961. doi:  10.1175/2007JAMC1874.1
    [14] 王洪, 吴乃庚, 万齐林, 等. 一次华南超级单体风暴的S波段偏振雷达观测分析. 气象学报, 2018, 76(1): 92-103. https://www.cnki.com.cn/Article/CJFDTOTAL-QXXB201801007.htm

    Wang H, Wu N G, Wan Q L, et al. Analysis of S-band polar metric radar observations of a hail-producing supercell. Acta Meteor Sinica, 2018, 76(1): 92-103. https://www.cnki.com.cn/Article/CJFDTOTAL-QXXB201801007.htm
    [15] 潘佳文, 蒋璐璐, 魏鸣, 等. 一次强降水超级单体的双偏振雷达观测分析. 气象学报, 2020, 78(1): 86-100. https://www.cnki.com.cn/Article/CJFDTOTAL-QXXB202001007.htm

    Pan J W, Jiang L L, Wei M, et al. Analysis of a high precipitation supercell based on dual polarization radar observations. Acta Meteor Sinica, 2020, 78(1): 86-100. https://www.cnki.com.cn/Article/CJFDTOTAL-QXXB202001007.htm
    [16] Straka J M, Mansell E R. A bulk microphysics parameterization with multiple ice precipitation categories. J Appl Meteor, 2005, 44(4): 445-466. doi:  10.1175/JAM2211.1
    [17] Park H S, Ryzhkov A V, Zrnic D S, et al. The hydrometeor classification algorithm for the polarimetric WSR-88D: Description and application to an MCS. Wea Forecasting, 2009, 24(3): 730-748. doi:  10.1175/2008WAF2222205.1
    [18] Wu C, Liu L P, Wei M, et al. Statistics-based optimization of the polarimetric radar hydrometeor classification algorithm and its application for a squall line in South China. Adv Atmos Sci, 2018, 35(3): 296-316. doi:  10.1007/s00376-017-6241-0
    [19] 徐舒扬, 吴翀, 刘黎平. 双偏振雷达水凝物相态识别算法的参数改进. 应用气象学报, 2020, 31(3): 350-360. doi:  10.11898/1001-7313.20200309

    Xu S Y, Wu C, Liu L P. Parameter improvements of hydrometeor classification algorithm for the dual-polarimetric radar. J Appl Meteor Sci, 2020, 31(3): 350-360. doi:  10.11898/1001-7313.20200309
    [20] 苏德斌, 马建立, 张蔷, 等. X波段双线偏振雷达冰雹识别初步研究. 气象, 2011, 37(10): 1228-1232. doi:  10.7519/j.issn.1000-0526.2011.10.005

    Su D B, Ma J L, Zhang Q, et al. Preliminary research on method of hail detection with X band dual linear polarization radar. Meteor Mon, 2011, 37(10): 1228-1232. doi:  10.7519/j.issn.1000-0526.2011.10.005
    [21] 苏冉, 廖菲, 周芯玉. 双线偏振雷达在广州"3.19"降雹过程中的应用分析. 热带气象学报, 2018, 34(2): 209-216. https://www.cnki.com.cn/Article/CJFDTOTAL-RDQX201802007.htm

    Su R, Liao F, Zhou Q Y, et al. Research on Guangzhou "3.19" hail event based on observation by dual-polarization weather radar. J Trop Meteor, 2018, 34(2): 209-216. https://www.cnki.com.cn/Article/CJFDTOTAL-RDQX201802007.htm
    [22] 冯晋勤, 张深寿, 吴陈锋, 等. 双偏振雷达产品在福建强对流天过程中的应用分析. 气象, 2018, 44(12): 1565-1574. doi:  10.7519/j.issn.10000526.2018.12.006

    Feng J Q, Zhang S S, Wu C F, et al. Application of dual polarization weather radar products to severe convective weather in Fujian. Meteor Mon, 2018, 44(12): 1565-1574. doi:  10.7519/j.issn.10000526.2018.12.006
    [23] Loffler-Mang M, Joss J. An optical disdrometer for measuring size and velocity of hydrometeors. J Atmos Oceanic Technol, 2000, 17(2): 130-139. doi:  10.1175/1520-0426(2000)017<0130:AODFMS>2.0.CO;2
    [24] Kruger A, Krajewski W F. Two-dimensional video disdrometer: A description. J Atmos Oceanic Technol, 2002, 19(5): 602-617. doi:  10.1175/1520-0426(2002)019<0602:TDVDAD>2.0.CO;2
    [25] Tokay A, Wolff D B, Petersen W A. Evaluationof the new version of the laser-optical disdrometer, OTT Parsivel 2. J Atmos Oceanic Technol, 2014, 31(6): 1276-1288. doi:  10.1175/JTECH-D-13-00174.1
    [26] Atlas D, Ulbrich C W. An observationally based conceptual model of warm oceanic convective rain in the tropics. J Climate Appl Meteor, 2000, 39(12): 2165-2181. doi:  10.1175/1520-0450(2001)040<2165:AOBCMO>2.0.CO;2
    [27] Ulbrich C W, Atlas D. Microphysics of raindrop size spectra: Tropical continental and maritime storms. J Appl Meteorol Climatol, 2007, 46(11): 1777-1791. doi:  10.1175/2007JAMC1649.1
    [28] Schuur T J, Ryzhkov A V, Zrnić D S, et al. Drop size distributions measured by a 2D video disdrometer: Comparison with dual-polarization radar data. J Appl Meteor, 2001, 40(6): 1019-1034. doi:  10.1175/1520-0450(2001)040<1019:DSDMBA>2.0.CO;2
    [29] Friedrich K, Kalina E A, Masters F J, et al. Drop-size distributions in thunderstorms measured by optical disdrometers during VORTEX2. Mon Wea Rev, 2013, 141(4): 1182-1203. doi:  10.1175/MWR-D-12-00116.1
    [30] 岳治国, 梁谷. 陕西渭北一次降雹过程的粒子谱特征分析. 高原气象, 2018, 37(6): 1716-1724. https://www.cnki.com.cn/Article/CJFDTOTAL-GYQX201806022.htm

    Yue Z G, Liang G. Characteristics of precipitation particles in a hailstorm process in Weibei area of Shaanxi Province. Plateau Meteor, 2018, 37(6): 1716-1724. https://www.cnki.com.cn/Article/CJFDTOTAL-GYQX201806022.htm
    [31] 陶涛, 张立新, 桑建人, 等. 六盘山区一次非典型冰雹天气过程微物理量特征的分析. 干旱区地理, 2020, 43(2): 299-307. https://www.cnki.com.cn/Article/CJFDTOTAL-GHDL202002003.htm

    Tao T, Zhang L X, Sang J R, et al. A case analysis of microphysical characteristics of atypical hail formation over Liupan Mountain, China. Arid Land and Geography, 2020, 43(2): 299-307. https://www.cnki.com.cn/Article/CJFDTOTAL-GHDL202002003.htm
    [32] Schmid W, Schiesser H H, Waldvogel A. The kinetic energy of hailfalls. Part Ⅳ: Patterns of hailpad and radar data. J Appl Metor, 1992, 31(10): 1165-1178. doi:  10.1175/1520-0450(1992)031<1165:TKEOHP>2.0.CO;2
    [33] 牛生杰, 马磊, 翟涛. 冰雹谱分布及Ze-E关系的初步分析. 气象学报, 1999, 57(2): 217-225. https://www.cnki.com.cn/Article/CJFDTOTAL-QXXB902.009.htm

    Niu S J, Ma L, Zhai T. Preliminary analysis of the hailstone spectra distribution and the relations between Ze and E. Acta Meteor Sinica, 1999, 57(2): 217-225. https://www.cnki.com.cn/Article/CJFDTOTAL-QXXB902.009.htm
    [34] 郭学良, 方春刚, 卢广献, 等. 2008-2018年我国人工影响天气技术及应用进展. 应用气象学报, 2019, 30(6): 641-650. doi:  10.11898/1001-7313.20190601

    Guo X L, Fang C G, Lu G X, et al. Progresses of weather modification technologies and applications in China from 2008 to 2018. J Appl Meteor Sci, 2019, 30(6): 641-650. doi:  10.11898/1001-7313.20190601
    [35] 刘泽, 郭凤霞, 郑栋, 等. 一次暖云强降水主导的对流单体闪电活动特征. 应用气象学报, 2020, 31(2): 185-196. doi:  10.11898/1001-7313.20200206

    Liu Z, Guo F X, Zheng D, et al. Lightning activities in a convection cell dominated by heavy warm cloud precipitation. J Appl Meteor Sci, 2020, 31(2): 185-196. doi:  10.11898/1001-7313.20200206
    [36] 蒋银丰, 寇蕾蕾, 陈爱军, 等. 双偏振雷达和双频测雨雷达反射率因子对比. 应用气象学报, 2020, 31(5): 608-619. doi:  10.11898/1001-7313.20200508

    Jiang Y F, Kou L L, Chen A J, et al. Comparison of reflectivity factor of dual polarization radar and dual-frequency precipitation radar. J Appl Meteor Sci, 2020, 31(5): 608-619. doi:  10.11898/1001-7313.20200508
    [37] Yuter S E, Kingsmill D E, Nance L B, et al. Observations of precipitation size and fall velocity characteristics within coexisting rain and wet snow. J Appl Meteor Climatol, 2006, 45(10): 1450-1464. doi:  10.1175/JAM2406.1
    [38] Battaglia A, Rustemeier E, Tokay A, et al. PARSIVEL snow observations: A critical assessment. J Atmos Oceanic Technol, 2010, 27(3): 333-344.
    [39] 袁野, 朱士超, 李爱华. 黄山雨滴下落过程滴谱变化特征. 应用气象学报, 2016, 27(6): 734-740. doi:  10.11898/1001-7313.20160610

    Yuan Y, Zhu S C, Li A H. Characteristics of raindrop falling process at the Mount Huang. J Appl Meteor Sci, 2016, 27(6): 734-740. doi:  10.11898/1001-7313.20160610
    [40] 宋灿, 周毓荃, 吴志会. 雨滴谱垂直演变特征的微雨雷达观测研究. 应用气象学报, 2019, 30(4): 479-490. doi:  10.11898/1001-7313.20190408

    Song C, Zhou Y Q, Wu Z H. Vertical profiles of raindrop size distribution observed by micro rain radar. J Appl Meteor Sci, 2019, 30(4): 479-490. doi:  10.11898/1001-7313.20190408
    [41] 梅海霞, 梁信忠, 曾明剑, 等. 2015-2017年夏季南京雨滴谱特征. 应用气象学报, 2020, 31(1): 117-128. doi:  10.11898/1001-7313.20200111

    Mei H X, Liang X Z, Zeng M J, et al. Raindrop size distribution characteristics of Nanjing in summer of 2015-2017. J Appl Meteor Sci, 2020, 31(1): 117-128. doi:  10.11898/1001-7313.20200111
    [42] Friedrich K, Higgins S, Masters F J, et al. Articulating and stationary PARSIVEL disdrometer measurements in conditions with strong winds and heavy rainfall. J Atmos Ocean Technol, 2013, 30(9): 2063-2080. doi:  10.1175/JTECH-D-12-00254.1
    [43] Ulbrich C W. Natural variations in the analytical form of the raindrop size distribution. J Appl Meteor, 1983, 22(10): 1764-1775. doi:  10.1175/1520-0450(1983)022<1764:NVITAF>2.0.CO;2
    [44] Tokay A, Short D A. Evidence from tropical raindrop spectra of the origin of rain from stratiform versus convective clouds. J Appl Meteorol, 1996, 35(3): 355-371. doi:  10.1175/1520-0450(1996)035<0355:EFTRSO>2.0.CO;2
    [45] Caracciolo C, Prodi F, Battaglia A. Analysis of the moments and parameters of a gamma DSD to infer precipitation properties: A convective stratiform discrimination algorithm. Atmos Res, 2006, 80(2/3): 165-186. http://www.sciencedirect.com/science/article/pii/S0169809505002097
    [46] Ulbrich C W, Atlas D. Rainfall microphysics and radar properties: Analysis methods for drop size spectra. J Climate Appl Meteor, 1998, 37(9): 912-923. doi:  10.1175/1520-0450(1998)037<0912:RMARPA>2.0.CO;2
    [47] Jaffrain J, Berne A. Experimental quantification of the sampling uncertainty associated with measurements from PARSIVEL disdrometers. J Hydrometeor, 2011, 12(3): 352-370. doi:  10.1175/2010JHM1244.1
    [48] Beard K V. Terminal velocity adjustment for cloud and precipitation drops aloft. J Atmos Sci, 1977, 34(8): 1293-1298. doi:  10.1175/1520-0469(1977)034<1293:TVAFCA>2.0.CO;2
    [49] Tokay A, Petersen W A, Gatlin P, et al. Comparison of raindrop size distribution measurements by collocated disdrometers. J Atmos Oceanic Technol, 2013, 30(8): 1672-1690. doi:  10.1175/JTECH-D-12-00163.1
    [50] Atlas D, Srivastava R C, Sekhon R S. Doppler radar characteristics of precipitation at vertical incidence. Rev Geophys, 1973, 11(1): 1-35. doi:  10.1029/RG011i001p00001
    [51] Locatelli J D, Hobbs P V. Fall speeds and masses of solid precipitation particles. J Geophys Res, 1974, 79(15): 2185-2197. doi:  10.1029/JC079i015p02185
    [52] Knight N C, Heymsfield A J. Measurement and interpretation of hailstone density and terminal velocity. J Atmos Sci, 1983, 40(6): 1510-1516. doi:  10.1175/1520-0469(1983)040<1510:MAIOHD>2.0.CO;2
    [53] Ryzhkov A V, Kumjian M R, Ganson S M, et al. Polarimetric radar characteristics of melting hail. Part Ⅰ: Theoretical simulations using spectral microphysical modeling. J Appl Meteor Climatol, 2013, 52(12): 2849-2870. doi:  10.1175/JAMC-D-13-073.1
    [54] Gatlin P N, Thurai M, Bringi V N, et al. Searching for large raindrops: A global summary of two-dimensional video disdrometer observations. J Appl Meteor Climatol, 2015, 54(5): 1069-1089. doi:  10.1175/JAMC-D-14-0089.1
    [55] Hu Z, Srivastava R C. Evolution of raindrop size distribution by coalescence, breakup, and evaporation: Theory and observation. J Atmos Sci, 1995, 52(10): 1761-1783. doi:  10.1175/1520-0469(1995)052<1761:EORSDB>2.0.CO;2
    [56] Rosenfeld D, Ulbrich C W. Cloud Microphysical Properties, Processes, and Rainfall Estimation Opportunities//Radar and Atmospheric Science: A Collection of Essays in Honor of David Atlas. Amer Meteor Soc, 2003: 237-258.
    [57] Fulton R A, Breidenbach J P, Seo D J, et al. The WSR-88D rainfall algorithm. Wea Forecasting, 1998, 13(2): 377-395. doi:  10.1175/1520-0434(1998)013<0377:TWRA>2.0.CO;2
    [58] Atlas D, Ulbrich C W. An observationally based conceptual model of warm oceanic convective rain in the Tropics. J Appl Meteor, 2000, 39(12): 2165-2181. doi:  10.1175/1520-0450(2001)040<2165:AOBCMO>2.0.CO;2
    [59] Uijlenhoet R, Smith J A, Steiner M. The microphysical structure of extreme precipitation as inferred from ground-based raindrop spectra. J Atmos Sci, 2003, 60(10): 1220-1238. doi:  10.1175/1520-0469(2003)60<1220:TMSOEP>2.0.CO;2
  • 加载中
图(7)
计量
  • 摘要浏览量:  1205
  • HTML全文浏览量:  334
  • PDF下载量:  156
  • 被引次数: 0
出版历程
  • 收稿日期:  2020-11-13
  • 修回日期:  2021-01-28
  • 刊出日期:  2021-05-31

目录

    /

    返回文章
    返回