Effects of High Temperature Stress on Leaf Chlorophyll Fluorescence Characteristics of Kiwifruit
-
摘要: 为探讨高温对猕猴桃叶片光合机构的影响,建立基于叶绿素荧光反应的高温热害识别指标,利用叶绿素快速荧光诱导动力学分析技术,研究不同温度胁迫下猕猴桃叶片8类叶绿素荧光的变化特征。结果表明:单位面积捕获的光能、单位面积有活性的反应中心数量、300 μs处相对可变荧光强度差值在30℃≤T≤54℃时均受温度胁迫影响,属光系统Ⅱ敏感位点参数,其中单位面积捕获的光能、单位面积有活性的反应中心数量随温度升高呈直线下降趋势,300 μs处相对可变荧光强度差值随温度升高呈指数上升趋势;初始荧光、最大荧光、最大光化学效率、单位面积的热耗散、单位面积用于电子传递的能量在较低温度胁迫下稳定少变,在较高温度胁迫下变化加剧,属光系统Ⅱ次敏感位点参数;多数叶绿素荧光参数在39℃和45℃存在两个突变临界点;叶绿素各荧光参数特征显示,猕猴桃叶片在30℃≤T < 39℃出现轻度温度胁迫,39℃≤T < 45℃出现中度温度胁迫,T≥45℃出现重度温度胁迫。Abstract: Kiwifruit is a vine with poor resistance to high temperature. The original habitat is mostly semi shade environment under mountain forest, with humid air, mild temperature change and weak light. The main problem in production is that the temperature of tree is often too high when the tree is introduced from the original forest environment in mountainous areas to cultivated under the direct sunlight in farmland. The leaves, fruits and trunks often get damaged.With the background of climate warming, in Shaanxi, the main kiwifruit producing area, extreme high temperature weather with daily maximum temperature over 40 ℃ often occurs. The high temperature damage of kiwifruit is particularly prominent, such as leaf wilting, shedding, fruit sunburn, fruit drop, and even tree death.In order to explore the effects of high temperature stress on photosynthetic apparatus of kiwifruit leaves and establish a heat injury identification index based on chlorophyll fluorescence response, the variation characteristics of the FO(minimal recorded fluorescence intensity), Fm(maximal recorded fluorescence intensity), Fa(maximal photochemistry efficiency), ΔWK(relative variable fluorescence difference at 300 μs), Tr(trapped energy flux per area at t=0), Et(electron transport flux per area at t=0), Dd(dissipated energy flux per area at t=0), Rm (density of QA-reducing PSⅡ reaction centers) in kiwifruit leaves under 30 ℃, 33 ℃, 36 ℃, 39 ℃, 42 ℃, 45 ℃, 48 ℃, 50 ℃, 52 ℃, 54 ℃ condition are studied by using the technique of fast chlorophyll fluorescence induction dynamics analysis(JIP-test). The results show that Tr, Rm and ΔWK are all affected by temperature stress in the range of 30-54 ℃, which belongs to PSⅡ sensitive site parameters, in which Tr, Rm show a linear downward trend with the increase of stress temperature, while ΔWK shows an exponential upward trend with the increase of stress temperature. FO, Fm, Fa, Dd, Et show stable or less variable under lower temperature stress, and intensified under higher temperature stress, which belongs to the secondary sensitive site parameters of PSⅡ. Most chlorophyll fluorescence parameters have two mutation critical points at 39 ℃ and 45 ℃. The results show that kiwifruit leaves have mild temperature stress at 30 ℃ ≤ T < 39 ℃, moderate temperature stress at 39 ℃ ≤ T < 45 ℃, and severe temperature stress at T ≥ 45 ℃.
-
表 1 快速叶绿素荧光诱导动力学曲线(OJIP)分析中使用的术语和公式
Table 1 Formulae and terms used in the analysis of OJIP fluorescence induction dynamics curve
术语和公式 定义 FO 暗适应后20 μs时的荧光强度 FK K相处(300 μs)的荧光强度 FI I相处(2 ms)的荧光强度 FJ J相处(30 ms)的荧光强度 FP 最大荧光处(P相)的荧光强度 Fm=FP 暗适应后的最大荧光强度 Fv=Fm-FO 在t时刻的可变荧光强度 Vt=(Ft-FO)/(Fm-FO) 在t时刻的相对可变荧光强度 VI=(FI-FO)/(Fm-FO) I相的相对可变荧光强度 VJ=(FJ-FO)/(Fm-FO) J相的相对可变荧光强度 MO=4×(FK-FO)/(Fm-FO) OJIP荧光诱导曲线的初始斜率 φP=1-(FO/Fm) PSⅡ最大光化学效率 φE=(1-(FO/Fm))×ψO 用于电子传递的量子产额 ψO=(1-VJ) 将电子传递到初级醌受体以后其他电子受体的概率 Fa=Fv/Fm 暗适应下PSⅡ的最大量子产额 Ac≈FO 单位面积吸收的光能 Rm=φP×(VJ/MO)×Ac 单位面积有活性的反应中心数量 Tr=φP×Ac 单位面积捕获的光能 Et=φE×Ac 单位面积用于电子传递的能量 Dd=Ac-Tr 单位面积的热耗散 -
[1] 黄宏文. 猕猴桃驯化改良百年启示及天然居群遗传渐渗的基因发掘. 植物学报, 2009, 44(2): 127-142. doi: 10.3969/j.issn.1674-3466.2009.02.001Huang H W. History of 100 years of domestication and improvement of kiwifruit and gene discovery from genetic introgressed populations in the wild. Chinese Bulletin of Botany, 2009, 44(2): 127-142. doi: 10.3969/j.issn.1674-3466.2009.02.001 [2] 王钊, 罗慧, 李亚丽, 等. 近50年秦岭南北不均匀增温及对城市化响应. 应用气象学报, 2016, 27(1): 85-94. doi: 10.11898/1001-7313.20160109Wang Z, Luo H, Li Y L, et al. Effects of urbanization on temperatures over the Qinling Mountains in the past 50 years. Journal of Applied Meteorological Science, 2016, 27(1): 85-94. doi: 10.11898/1001-7313.20160109 [3] 陈峪, 任国玉, 王凌, 等. 近56年我国暖冬气候事件变化. 应用气象学报, 2009, 20(5): 539-545. doi: 10.3969/j.issn.1001-7313.2009.05.004Chen Y, Ren G Y, Wang L, et al. Temporal change of warm winter events over the last 56 years in China. Journal of Applied Meteorological Science, 2009, 20(5): 539-545. doi: 10.3969/j.issn.1001-7313.2009.05.004 [4] 赵平, 南素兰. 气候和气候变化领域的研究进展. 应用气象学报, 2006, 17(6): 725-735. doi: 10.3969/j.issn.1001-7313.2006.06.010Zhao P, Nan S L. Some advances in climate and climate change research. Journal of Applied Meteorological Science, 2006, 17(6): 725-735. doi: 10.3969/j.issn.1001-7313.2006.06.010 [5] 李星敏, 柏秦凤, 朱琳. 气候变化对陕西苹果生长适宜性影响. 应用气象学报, 2011, 22(2): 241-248. doi: 10.3969/j.issn.1001-7313.2011.02.013Li X M, Bai Q F, Zhu L. The Influence of climate change on suitability of Shaanxi apple growth. Journal of Applied Meteorological Science, 2011, 22(2): 241-248. doi: 10.3969/j.issn.1001-7313.2011.02.013 [6] 吕岩, 郭勇社. 猕猴桃散射光日灼发生成因浅析. 西北园艺, 1999(3): 20-22. https://www.cnki.com.cn/Article/CJFDTOTAL-XBYY199903017.htmLü Y, Guo Y S. Analysis on the cause of kiwifruit sunburn caused by scattered light. Northwest Horticulture, 1999(3): 20-22. https://www.cnki.com.cn/Article/CJFDTOTAL-XBYY199903017.htm [7] 施春晖, 王晓庆, 骆军. 高温下猕猴桃抗氧化生理响应及日灼伤害阈值温度. 上海农业学报, 2017, 33(4): 72-76. https://www.cnki.com.cn/Article/CJFDTOTAL-SHLB201704019.htmShi C H, Wang X Q, Luo J. Antioxidant physiological response and threshold temperature of sunburn injury in kiwifruit at high temperature. Acta Agriculturae Shanghai, 2017, 33(4): 72-76. https://www.cnki.com.cn/Article/CJFDTOTAL-SHLB201704019.htm [8] 李学宏, 潘晓红, 李夏. 高温干旱对猕猴桃生长发育的影响及应对措施. 西北园艺, 2017(5): 24-26. https://www.cnki.com.cn/Article/CJFDTOTAL-XBYY201703015.htmLi X H, Pan X H, Li X. Effects of high temperature and drought on growth and development of kiwifruit and countermeasures. Northwest Horticulture, 2017(5): 24-26. https://www.cnki.com.cn/Article/CJFDTOTAL-XBYY201703015.htm [9] Toth Z Z, Schansker G, Gara G, et al. Photosynthetic electron transport activity in heat-treated barley leaves: The role of internal alternative electron donors to photosystemⅡ. Biochimica et Biophysica Acta, 2007, 767(4): 295-305. http://www.sciencedirect.com/science/article/pii/S0005272807000515 [10] Jiang C D, Gao H Y, Zou Q. Leaf orientation, photorespiration and xanthophyll cycle protect young soybean leaves against high irradince in field. Environmental and Experimental Botany, 2006, 55: 87-96. doi: 10.1016/j.envexpbot.2004.10.003 [11] van Heerden P D R, Swanepoel J W, Krüger G H J. Modulation of photosynthesis by drought in two desert scrub species exhibiting C3-mode CO2 assimilation. Environmental and Experimental Botany, 2007, 61(2): 124-136. doi: 10.1016/j.envexpbot.2007.05.005 [12] Georgieva K, Tsonev T, Velikova V, et al. Photosynthetic activity during high temperature of pea plants. Journal of Plant Physiology, 2000, 157(2): 169-176. doi: 10.1016/S0176-1617(00)80187-X [13] 王振兴, 艾军, 陈丽, 等. 软枣猕猴桃叶片光系统Ⅱ活性对不同温度的响应. 西北植物学报, 2015, 35(2): 329-334. https://www.cnki.com.cn/Article/CJFDTOTAL-DNYX201502019.htmWang Z X, Ai J, Chen L, et al. Activity of photosystemsⅡin leaves of actinidia arguta under different temperature treatments. Acta Botanica Boreali-Occidentalia Sinica, 2015, 35(2): 329-334. https://www.cnki.com.cn/Article/CJFDTOTAL-DNYX201502019.htm [14] 钟敏, 张文标, 邹梁峰, 等. 高温下猕猴桃光合作用和叶绿素荧光特性的日变化. 江西农业大学学报, 2018, 40(3): 472-478. https://www.cnki.com.cn/Article/CJFDTOTAL-JXND201803006.htmZhong M, Zhang W B, Zou L F, et al. Diurnal variation of photosynthesis and chlorophyll fluorescence characteristics in kiwifruit under high temperature condition. Acta Agriculturae Universitatis Jiangxiensis, 2018, 40(3): 472-478. https://www.cnki.com.cn/Article/CJFDTOTAL-JXND201803006.htm [15] 杜国栋, 吕德国, 赵玲, 等. 高温对仁用杏光合特性及PSⅡ光化学活性的影响. 应用生态学报, 2011, 22(3): 701-706. https://www.cnki.com.cn/Article/CJFDTOTAL-YYSB201103021.htmDu G D, Lü D G, Zhao L, et al. Effects of high temperature on leaf photosynthetic characteristics and photosystemⅡ photochemical activity of kernel-used apricot. Chinese Journal of Applied Ecology, 2011, 22(3): 701-706. https://www.cnki.com.cn/Article/CJFDTOTAL-YYSB201103021.htm [16] 陈家今, 李丽纯, 林晶, 等. 福建省枇杷气象灾害综合风险评估. 应用气象学报, 2014, 25(2): 232-241. doi: 10.3969/j.issn.1001-7313.2014.02.013Chen J J, Li L C, Lin J, et al. Integrated risk evaluation on meteorological disasters of loquat in Fujian Province. Journal of Applied Meteorological Science, 2014, 25(2): 232-241. doi: 10.3969/j.issn.1001-7313.2014.02.013 [17] 杨凯, 陈彬彬, 陈惠, 等. 福建省台湾青枣寒害综合气候指标与等级划分. 应用气象学报, 2020, 31(4): 427-434. doi: 10.11898/1001-7313.20200405Yang K, Chen B B, Chen H, et al. Comprehensive climatic index and grade classification of cold damage for Taiwan green jujube in Fujian. Journal of Applied Meteorological Science, 2020, 31(4): 427-434. doi: 10.11898/1001-7313.20200405 [18] 李鹏民, 高辉远, Strasser R J. 快速叶绿素荧光诱导动力学分析在光合作用研究中的应用. 植物生理与分子生物学学报, 2005, 31(6): 559-566. https://www.cnki.com.cn/Article/CJFDTOTAL-ZWSI200506001.htmLi P M, Gao H Y, Strasser R J. Application of chlorophyll fluorescence dynamics to the study of phytobiology. Journal of Plant Physiology and Molecular Biology, 2005, 31(6): 559-566. https://www.cnki.com.cn/Article/CJFDTOTAL-ZWSI200506001.htm [19] Strasser B J. Donor side capacity of photosystemⅡprobed by chlorophyll fluorescence transients. Photosynthesis Research, 1997, 52(2): 147-155. http://jxb.oxfordjournals.org/external-ref?access_num=10.1023/A:1005896029778&link_type=DOI [20] Strasser R J, Srivastava A, Tsimilli-Michael M. The Fluorescence Transient as a Tool to Characterise and Screen Photosynthetic Samples. Bristol: Taylor and Francis, 2000: 445-483. http://www.cabdirect.org/abstracts/20003011575.html [21] Oukarroum A, Schansker G, Strasser R J. Drought stress effects on photosystem I content and photosystemⅡ thermotolerance analyzed using Chl a fluorescence kinetics in barley varieties differing in their drought tolerance. Physiologia Plantarum, 2009, 137(2): 188-199. [22] 郭建平. 农业气象灾害监测预测技术研究进展. 应用气象学报, 2016, 27(5): 620-630. doi: 10.11898/1001-7313.20160510Guo J P. Research progress on agricultural meteorological disaster monitoring and forecasting. Journal of Applied Meteorological Science, 2016, 27(5): 620-630. doi: 10.11898/1001-7313.20160510 [23] 屈振江, 周广胜, 魏钦平. 苹果花期冻害气象指标和风险评估. 应用气象学报, 2016, 27(4): 385-395. doi: 10.11898/1001-7313.20160401Qu Z J, Zhou G S, Wei Q P. Meteorological disaster index and risk assessment of frost injury during apple florescence. Journal of Applied Meteorological Science, 2016, 27(4): 385-395. doi: 10.11898/1001-7313.20160401 [24] 陆魁东, 黄晚华, 方丽, 等. 气象灾害指标在湖南春玉米种植区划中的应用. 应用气象学报, 2007, 18(4): 548-553. http://qikan.camscma.cn/article/id/20070485Lu K D, Huang W H, Fang L, et al. The climatic zoning of spring maize in Hunan based on meteorological disaster indexes. Journal of Applied Meteorological Science, 2007, 18(4): 548-553. http://qikan.camscma.cn/article/id/20070485 [25] 钟彩虹. 猕猴桃研究进展(Ⅸ). 北京: 科学技术出版社, 2019.Zhong C H. Advances in Actinidia Research(Ⅸ). Beijing: Science & Technology Press, 2019. [26] 原佳乐, 马超, 冯雅岚, 等. 不同抗旱性小麦快速叶绿素荧光诱导动力学曲线对干旱及复水的响应. 植物生理学报, 2018, 54(6): 1119-1129. https://www.cnki.com.cn/Article/CJFDTOTAL-ZWSL201806021.htmYuan J L, Ma C, Feng Y L, et al. Response of chlorophyll fluorescence transient in leaves of wheats with different drought resistances to drought stresses and rehydration. Plant Physiology Journal, 2018, 54(6): 1119-1129. https://www.cnki.com.cn/Article/CJFDTOTAL-ZWSL201806021.htm [27] 陆思宇, 杨再强, 张源达, 等. 高温条件下光周期对鲜切菊花叶片光合系统荧光特性的影响. 中国农业气象, 2020, 41(10): 632-643. https://www.cnki.com.cn/Article/CJFDTOTAL-ZGNY202010004.htmLu S Y, Yang Z Q, Zhang Y D, et al. Effect of photoperiod on fluorescence characteristics of photosynthetic system of fresh-cut chrysanthemum leaves under high temperature. Chinese Journal of Agrometeorology, 2020, 41(10): 632-643. https://www.cnki.com.cn/Article/CJFDTOTAL-ZGNY202010004.htm [28] 陈彪, 张杰, 马晓寒, 等. 外源硒对干旱胁迫下烤烟叶绿素荧光特性和叶片化学成分的影响. 中国农业科技导报, 2018, 20(10): 95-104. https://www.cnki.com.cn/Article/CJFDTOTAL-NKDB201810012.htmChen B, Zhang J, Ma X H, et al. Influences of exogenous selenium on the chlorophyll fluorescence characteristics and chemical composition in flue-cured tobacco under drought stress. Journal of Agricultural Science and Technology, 2018, 20(10): 95-104. https://www.cnki.com.cn/Article/CJFDTOTAL-NKDB201810012.htm [29] Li P, Cheng L, Gao H, et al. Heterogeneous behavior of PSⅡin soybean(Glycine max) leaves with identical PSⅡ photochemistry efficiency under different high temperature treatments. Journal of Plant Physiology, 2009, 166(15): 1607-1615. http://www.ncbi.nlm.nih.gov/pubmed/19473728 [30] 金立桥, 车兴凯, 张子山, 等. 高温、强光下黄瓜叶片PSⅡ供体侧和受体侧的伤害程度与快速荧光参数Wk变化的关系. 植物生理学报, 2015, 51(6): 969-976. https://www.cnki.com.cn/Article/CJFDTOTAL-ZWSL201506024.htmJin L Q, Che X K, Zhang Z S, et al. The relationship between the changes in Wk and different damage degree of PSⅡ donor side and acceptor side under high temperature with high light in cucumber. Plant Physiology Journal, 2015, 51(6): 969-976. https://www.cnki.com.cn/Article/CJFDTOTAL-ZWSL201506024.htm [31] 陈贻竹, 李晓萍, 夏丽, 等. 叶绿素荧光技术在植物环境胁迫研究中的应用. 热带亚热带植物学报, 1995, 3(4): 79-86. https://www.cnki.com.cn/Article/CJFDTOTAL-RYZB504.013.htmChen Y Z, Li X P, Xia L, et al. The application of chlorophyll fluorescence technique in the study of responses of plants to environmental stresses. Journal of Tropical and Subtropical Botany, 1995, 3(4): 79-86. https://www.cnki.com.cn/Article/CJFDTOTAL-RYZB504.013.htm [32] Bilger H W, Schreiber U, Lange O L. Determination of leafheat resistance: Comparative investigation of chlorophyll fluorescence changes and tissue necrosis methods. Oecologia, 1984, 63(2): 256-262. http://aob.oxfordjournals.org/external-ref?access_num=10.1007/BF00379886&link_type=DOI [33] Schreiber U, Berry J A. Heat induced changes in chlorophyll fluorescence in intact leaves correlated with damage of the photosynthetic apparatus. Planta, 1977, 136: 233-238. http://jxb.oxfordjournals.org/external-ref?access_num=10.1007/BF00385990&link_type=DOI [34] Seemann J R, Downton W J, Berry J A. Temperature and leaf osmotic potential as factors in the acclimation of photosynthesis to high temperature in desert plants. Plant Physiology, 1986, 80: 926-930. http://europepmc.org/abstract/MED/16664743 [35] 冯建灿, 胡秀丽, 毛训甲, 等. 叶绿素荧光动力学在研究植物逆境生理中的应用. 经济林研究, 2002, 20(4): 14-18. https://www.cnki.com.cn/Article/CJFDTOTAL-JLYJ200204003.htmFeng J C, Hu X L, Mao X J, et al. Application of chlorophyll fluorescence dynamics to plant physiology in adverse circumstance. Economic Forest Researche, 2002, 20(4): 14-18. https://www.cnki.com.cn/Article/CJFDTOTAL-JLYJ200204003.htm [36] 李晓, 冯伟, 曾晓春. 叶绿素荧光分析技术及应用进展. 西北植物学报, 2006, 26(10): 2186-2196. https://www.cnki.com.cn/Article/CJFDTOTAL-DNYX200610036.htmLi X, Feng W, Zeng X C. Advances in chlorophyll fluorescence analysis and its uses. Acta Botanica Boreali-Occidentalia Sinica, 2006, 26(10): 2186-2196. https://www.cnki.com.cn/Article/CJFDTOTAL-DNYX200610036.htm [37] Yamane Y, Kashino Y, Koike H, et al. Increases in the fluorescence level and Fo level and reversible inhibition of photosystem Ⅱreaction center by high-temperature treatment in higher plants. Photosynthesis Research, 1997, 52: 57-64. http://www.springerlink.com/content/u135n77w43623766/ [38] Srivastava A, Strasser R.J. Stress and stress management of land plants during a regular day. Journal of Plant Physiology, 1996, 148: 445-455. [39] Yamane Y, Kashino Y, Koike H. Effects of high temperatures on the photosynthetic systems in spinach: Oxygen evolving activities, fluorescence characteristics and the denaturation process. Photosynthesis Res, 1998, 57: 51-59. doi: 10.1023/A:1006019102619 [40] 王梅, 高志奎, 黄瑞虹, 等. 茄子光系统Ⅱ热胁迫特性. 应用生态学报, 2007, 18(1): 63-68. https://www.cnki.com.cn/Article/CJFDTOTAL-YYSB200701010.htmWang M, Gao Z K, Huang R H, et al. Heat stress characteristics of photosystemⅡin eggplant. Chinese Journal of Applied Ecology, 2007, 18(1): 63-68. https://www.cnki.com.cn/Article/CJFDTOTAL-YYSB200701010.htm